// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" #ifdef WIN32 const char sep = '\\'; #else const char sep = '/'; #endif void InitAndInfer(const std::string &det_model_dir, const std::string &rec_label_file, const std::string &image_file, const fastdeploy::RuntimeOption &option) { auto det_model_file = det_model_dir + sep + "ch_PP-OCRv3_det_1684x_f32.bmodel"; auto det_params_file = det_model_dir + sep + ""; auto cls_model_file = det_model_dir + sep + "ch_ppocr_mobile_v2.0_cls_1684x_f32.bmodel"; auto cls_params_file = det_model_dir + sep + ""; auto rec_model_file = det_model_dir + sep + "ch_PP-OCRv3_rec_1684x_f32.bmodel"; auto rec_params_file = det_model_dir + sep + ""; auto format = fastdeploy::ModelFormat::SOPHGO; auto det_option = option; auto cls_option = option; auto rec_option = option; // The cls and rec model can inference a batch of images now. // User could initialize the inference batch size and set them after create // PPOCR model. int cls_batch_size = 1; int rec_batch_size = 1; // If use TRT backend, the dynamic shape will be set as follow. // We recommend that users set the length and height of the detection model to // a multiple of 32. We also recommend that users set the Trt input shape as // follow. det_option.SetTrtInputShape("x", {1, 3, 64, 64}, {1, 3, 640, 640}, {1, 3, 960, 960}); cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320}, {cls_batch_size, 3, 48, 1024}); rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320}, {rec_batch_size, 3, 48, 2304}); // Users could save TRT cache file to disk as follow. // det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt"); // cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt"); // rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt"); auto det_model = fastdeploy::vision::ocr::DBDetector( det_model_file, det_params_file, det_option, format); auto cls_model = fastdeploy::vision::ocr::Classifier( cls_model_file, cls_params_file, cls_option, format); auto rec_model = fastdeploy::vision::ocr::Recognizer( rec_model_file, rec_params_file, rec_label_file, rec_option, format); // Users could enable static shape infer for rec model when deploy PP-OCR on // hardware which can not support dynamic shape infer well, like Huawei Ascend // series. rec_model.GetPreprocessor().SetStaticShapeInfer(true); rec_model.GetPreprocessor().SetRecImageShape({3, 48, 584}); assert(det_model.Initialized()); assert(cls_model.Initialized()); assert(rec_model.Initialized()); // The classification model is optional, so the PP-OCR can also be connected // in series as follows auto ppocr_v3 = // fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model); auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model); // Set inference batch size for cls model and rec model, the value could be -1 // and 1 to positive infinity. When inference batch size is set to -1, it // means that the inference batch size of the cls and rec models will be the // same as the number of boxes detected by the det model. ppocr_v3.SetClsBatchSize(cls_batch_size); ppocr_v3.SetRecBatchSize(rec_batch_size); if (!ppocr_v3.Initialized()) { std::cerr << "Failed to initialize PP-OCR." << std::endl; return; } auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::OCRResult result; if (!ppocr_v3.Predict(&im, &result)) { std::cerr << "Failed to predict." << std::endl; return; } std::cout << result.Str() << std::endl; auto vis_im = fastdeploy::vision::VisOcr(im_bak, result); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } int main(int argc, char *argv[]) { if (argc < 4) { std::cout << "Usage: infer_demo path/to/model " "path/to/rec_label_file path/to/image " "e.g ./infer_demo ./ocr_bmodel " "./ppocr_keys_v1.txt ./12.jpg" << std::endl; return -1; } fastdeploy::RuntimeOption option; option.UseSophgo(); option.UseSophgoBackend(); std::string model_dir = argv[1]; std::string rec_label_file = argv[2]; std::string test_image = argv[3]; InitAndInfer(model_dir, rec_label_file, test_image, option); return 0; }