# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--det_model", required=True, help="Path of Detection model of PPOCR." ) parser.add_argument( "--cls_model", required=True, help="Path of Classification model of PPOCR." ) parser.add_argument( "--rec_model", required=True, help="Path of Recognization model of PPOCR." ) parser.add_argument( "--rec_label_file", required=True, help="Path of Recognization model of PPOCR." ) parser.add_argument( "--image", type=str, required=True, help="Path of test image file." ) parser.add_argument( "--device", type=str, default="cpu", help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.", ) parser.add_argument( "--cpu_thread_num", type=int, default=9, help="Number of threads while inference on CPU.", ) return parser.parse_args() def build_option(args): det_option = fd.RuntimeOption() cls_option = fd.RuntimeOption() rec_option = fd.RuntimeOption() if args.device == "npu": det_option.use_rknpu2() cls_option.use_rknpu2() rec_option.use_rknpu2() return det_option, cls_option, rec_option def build_format(args): det_format = fd.ModelFormat.ONNX cls_format = fd.ModelFormat.ONNX rec_format = fd.ModelFormat.ONNX if args.device == "npu": det_format = fd.ModelFormat.RKNN cls_format = fd.ModelFormat.RKNN rec_format = fd.ModelFormat.RKNN return det_format, cls_format, rec_format args = parse_arguments() # Detection模型, 检测文字框 det_model_file = args.det_model det_params_file = "" # Classification模型,方向分类,可选 cls_model_file = args.cls_model cls_params_file = "" # Recognition模型,文字识别模型 rec_model_file = args.rec_model rec_params_file = "" rec_label_file = args.rec_label_file det_option, cls_option, rec_option = build_option(args) det_format, cls_format, rec_format = build_format(args) det_model = fd.vision.ocr.DBDetector( det_model_file, det_params_file, runtime_option=det_option, model_format=det_format ) cls_model = fd.vision.ocr.Classifier( cls_model_file, cls_params_file, runtime_option=cls_option, model_format=cls_format ) rec_model = fd.vision.ocr.Recognizer( rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option, model_format=rec_format, ) # Det,Rec模型启用静态shape推理 det_model.preprocessor.static_shape_infer = True rec_model.preprocessor.static_shape_infer = True if args.device == "npu": det_model.preprocessor.disable_normalize() det_model.preprocessor.disable_permute() cls_model.preprocessor.disable_normalize() cls_model.preprocessor.disable_permute() rec_model.preprocessor.disable_normalize() rec_model.preprocessor.disable_permute() # 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None ppocr_v3 = fd.vision.ocr.PPOCRv3( det_model=det_model, cls_model=cls_model, rec_model=rec_model ) # Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理 ppocr_v3.cls_batch_size = 1 ppocr_v3.rec_batch_size = 1 # 预测图片准备 im = cv2.imread(args.image) # 预测并打印结果 result = ppocr_v3.predict(im) print(result) # 可视化结果 vis_im = fd.vision.vis_ppocr(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")