// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" void InitAndInfer(const std::string &det_model_file, const std::string &cls_model_file, const std::string &rec_model_file, const std::string &rec_label_file, const std::string &image_file, const fastdeploy::RuntimeOption &option, const fastdeploy::ModelFormat &format) { auto det_params_file = ""; auto cls_params_file = ""; auto rec_params_file = ""; auto det_option = option; auto cls_option = option; auto rec_option = option; if (format == fastdeploy::ONNX) { std::cout << "ONNX Model" << std::endl; } auto det_model = fastdeploy::vision::ocr::DBDetector( det_model_file, det_params_file, det_option, format); auto cls_model = fastdeploy::vision::ocr::Classifier( cls_model_file, cls_params_file, cls_option, format); auto rec_model = fastdeploy::vision::ocr::Recognizer( rec_model_file, rec_params_file, rec_label_file, rec_option, format); if (format == fastdeploy::RKNN) { cls_model.GetPreprocessor().DisableNormalize(); cls_model.GetPreprocessor().DisablePermute(); det_model.GetPreprocessor().DisableNormalize(); det_model.GetPreprocessor().DisablePermute(); rec_model.GetPreprocessor().DisableNormalize(); rec_model.GetPreprocessor().DisablePermute(); } det_model.GetPreprocessor().SetStaticShapeInfer(true); rec_model.GetPreprocessor().SetStaticShapeInfer(true); assert(det_model.Initialized()); assert(cls_model.Initialized()); assert(rec_model.Initialized()); // The classification model is optional, so the PP-OCR can also be connected // in series as follows auto ppocr_v3 = // fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model); auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model); // When users enable static shape infer for rec model, the batch size of cls // and rec model must to be set to 1. ppocr_v3.SetClsBatchSize(1); ppocr_v3.SetRecBatchSize(1); if (!ppocr_v3.Initialized()) { std::cerr << "Failed to initialize PP-OCR." << std::endl; return; } auto im = cv::imread(image_file); fastdeploy::vision::OCRResult result; if (!ppocr_v3.Predict(im, &result)) { std::cerr << "Failed to predict." << std::endl; return; } std::cout << result.Str() << std::endl; auto vis_im = fastdeploy::vision::VisOcr(im, result); cv::imwrite("vis_result.jpg", vis_im); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } int main(int argc, char *argv[]) { if (argc < 7) { std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model " "path/to/rec_model path/to/rec_label_file path/to/image " "run_option, " "e.g ./infer_demo ./ch_PP-OCRv3_det_infer " "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer " "./ppocr_keys_v1.txt ./12.jpg 0" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with ascend." << std::endl; return -1; } fastdeploy::RuntimeOption option; fastdeploy::ModelFormat format; int flag = std::atoi(argv[6]); if (flag == 0) { option.UseCpu(); format = fastdeploy::ONNX; } else if (flag == 1) { option.UseRKNPU2(); format = fastdeploy::RKNN; } std::string det_model_dir = argv[1]; std::string cls_model_dir = argv[2]; std::string rec_model_dir = argv[3]; std::string rec_label_file = argv[4]; std::string test_image = argv[5]; InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, test_image, option, format); return 0; }