# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(__file__) sys.path.append(__dir__) sys.path.append(os.path.join(__dir__, "..", "..", "..")) sys.path.append(os.path.join(__dir__, "..", "..", "..", "tools")) import paddle from ppocr.data import build_dataloader, set_signal_handlers from ppocr.modeling.architectures import build_model from ppocr.postprocess import build_post_process from ppocr.metrics import build_metric from ppocr.utils.save_load import load_model import tools.program as program def main(config, device, logger, vdl_writer): global_config = config["Global"] # build dataloader set_signal_handlers() valid_dataloader = build_dataloader(config, "Eval", device, logger) # build post process post_process_class = build_post_process(config["PostProcess"], global_config) # build model # for rec algorithm if hasattr(post_process_class, "character"): char_num = len(getattr(post_process_class, "character")) config["Architecture"]["Head"]["out_channels"] = char_num model = build_model(config["Architecture"]) if config["Architecture"]["model_type"] == "det": input_shape = [1, 3, 640, 640] elif config["Architecture"]["model_type"] == "rec": input_shape = [1, 3, 32, 320] flops = paddle.flops(model, input_shape) logger.info("FLOPs before pruning: {}".format(flops)) from paddleslim.dygraph import FPGMFilterPruner model.train() pruner = FPGMFilterPruner(model, input_shape) # build metric eval_class = build_metric(config["Metric"]) def eval_fn(): metric = program.eval(model, valid_dataloader, post_process_class, eval_class) if config["Architecture"]["model_type"] == "det": main_indicator = "hmean" else: main_indicator = "acc" logger.info("metric[{}]: {}".format(main_indicator, metric[main_indicator])) return metric[main_indicator] params_sensitive = pruner.sensitive( eval_func=eval_fn, sen_file="./sen.pickle", skip_vars=["conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"], ) logger.info( "The sensitivity analysis results of model parameters saved in sen.pickle" ) # calculate pruned params's ratio params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02) for key in params_sensitive.keys(): logger.info("{}, {}".format(key, params_sensitive[key])) plan = pruner.prune_vars(params_sensitive, [0]) flops = paddle.flops(model, input_shape) logger.info("FLOPs after pruning: {}".format(flops)) # load pretrain model load_model(config, model) metric = program.eval(model, valid_dataloader, post_process_class, eval_class) if config["Architecture"]["model_type"] == "det": main_indicator = "hmean" else: main_indicator = "acc" logger.info("metric['']: {}".format(main_indicator, metric[main_indicator])) # start export model from paddle.jit import to_static infer_shape = [3, -1, -1] if config["Architecture"]["model_type"] == "rec": infer_shape = [3, 32, -1] # for rec model, H must be 32 if ( "Transform" in config["Architecture"] and config["Architecture"]["Transform"] is not None and config["Architecture"]["Transform"]["name"] == "TPS" ): logger.info( "When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training" ) infer_shape[-1] = 100 model = to_static( model, input_spec=[ paddle.static.InputSpec(shape=[None] + infer_shape, dtype="float32") ], ) save_path = "{}/inference".format(config["Global"]["save_inference_dir"]) paddle.jit.save(model, save_path) logger.info("inference model is saved to {}".format(save_path)) if __name__ == "__main__": config, device, logger, vdl_writer = program.preprocess(is_train=True) main(config, device, logger, vdl_writer)