#!/bin/bash # 本脚本用于测试PPOCRV4_det系列模型的自动压缩功能 ## 运行脚本前,请确保处于以下环境: ## CUDA11.7+TensorRT8.4.2.4+Paddle2.5.2 model_type="$1" if [ "$model_type" = "mobile" ]; then echo "test ppocrv4_det_mobile model......" ## 启动自动化压缩训练 CUDA_VISIBLE_DEVICES=0 python run.py --save_dir ./models/det_mobile_qat --config_path configs/ppocrv4/ppocrv4_det_qat_dist.yaml ## GPU指标测试 ### 量化前,预期指标:hmean:72.71%;time:4.7ms python test_ocr.py --model_path ./models/ch_PP-OCRv4_det_infer --config ./configs/ppocrv4/ppocrv4_det_qat_dist.yaml --precision fp32 --use_trt True ### 量化后,预期指标:hmean:71.38%;time:3.3ms python test_ocr.py --model_path ./models/det_mobile_qat --config ./configs/ppocrv4/ppocrv4_det_qat_dist.yaml --precision int8 --use_trt True ## CPU指标测试 ### 量化前,预期指标:hmean:72.71%;time:198.4ms python test_ocr.py --model_path ./models/ch_PP-OCRv4_det_infer --config ./configs/ppocrv4/ppocrv4_det_qat_dist.yaml --precision fp32 --use_mkldnn True --device CPU --cpu_threads 12 ### 量化后,预期指标:hmean:72.30%;time:205.2ms python test_ocr.py --model_path ./models/det_mobile_qat --config ./configs/ppocrv4/ppocrv4_det_qat_dist.yaml --precision int8 --use_mkldnn True --device CPU --cpu_threads 12 # 量化前模型推理 # GPU python tools/infer/predict_det.py --det_model_dir deploy/slim/auto_compression/models/ch_PP-OCRv4_det_infer \ --benchmark True --image_dir deploy/slim/auto_compression/datasets/v4_4_test_dataset --use_gpu True \ --use_tensorrt True --warmup True --precision fp32 # CPU python tools/infer/predict_det.py --det_model_dir deploy/slim/auto_compression/models/ch_PP-OCRv4_det_infer \ --benchmark True --image_dir deploy/slim/auto_compression/datasets/v4_4_test_dataset --use_gpu False \ --enable_mkldnn True --warmup True --precision fp32 # 量化后模型推理 # GPU python tools/infer/predict_det.py --det_model_dir deploy/slim/auto_compression/models/det_mobile_qat \ --benchmark True --image_dir deploy/slim/auto_compression/datasets/v4_4_test_dataset --use_gpu True \ --use_tensorrt True --warmup True --precision int8 # CPU python tools/infer/predict_det.py --det_model_dir deploy/slim/auto_compression/models/det_mobile_qat \ --benchmark True --image_dir deploy/slim/auto_compression/datasets/v4_4_test_dataset --use_gpu False \ --enable_mkldnn True --warmup True --precision int8 elif [ "$model_type" = "server" ]; then echo "test ppocrv4_det_server model......" ## 启动自动化压缩训练 CUDA_VISIBLE_DEVICES=0 python run.py --save_dir ./models/det_server_qat --config_path configs/ppocrv4/ppocrv4_det_server_qat_dist.yaml ## GPU指标测试 ### 量化前,预期指标:hmean:79.77%;time:50.0ms python test_ocr.py --model_path ./models/ch_PP-OCRv4_det_server_infer --config ./configs/ppocrv4/ppocrv4_det_server_qat_dist.yaml --precision fp32 --use_trt True ### 量化后,预期指标:hmean:79.81%;time:42.4ms python test_ocr.py --model_path ./models/det_server_qat --config ./configs/ppocrv4/ppocrv4_det_server_qat_dist.yaml --precision int8 --use_trt True ## CPU指标测试 ### 量化前,预期指标:hmean:79.77%;time:2159.4ms python test_ocr.py --model_path ./models/ch_PP-OCRv4_det_server_infer --config ./configs/ppocrv4/ppocrv4_det_server_qat_dist.yaml --precision fp32 --use_mkldnn True --device CPU --cpu_threads 12 ### 量化后,预期指标:hmean:79.69%;time:1834.8ms python test_ocr.py --model_path ./models/det_server_qat --config ./configs/ppocrv4/ppocrv4_det_server_qat_dist.yaml --precision int8 --use_mkldnn True --device CPU --cpu_threads 12 ## 量化前模型推理 ### GPU python tools/infer/predict_det.py --det_model_dir deploy/slim/auto_compression/models/ch_PP-OCRv4_det_server_infer \ --benchmark True --image_dir deploy/slim/auto_compression/datasets/v4_4_test_dataset --use_gpu True \ --use_tensorrt True --warmup True --precision fp32 ### CPU python tools/infer/predict_det.py --det_model_dir deploy/slim/auto_compression/models/ch_PP-OCRv4_det_server_infer \ --benchmark True --image_dir deploy/slim/auto_compression/datasets/v4_4_test_dataset --use_gpu False \ --enable_mkldnn True --warmup True --precision fp32 ## 量化后模型推理 ### GPU python tools/infer/predict_det.py --det_model_dir deploy/slim/auto_compression/models/det_server_qat \ --benchmark True --image_dir deploy/slim/auto_compression/datasets/v4_4_test_dataset --use_gpu True \ --use_tensorrt True --warmup True --precision int8 ### CPU python tools/infer/predict_det.py --det_model_dir deploy/slim/auto_compression/models/det_server_qat \ --benchmark True --image_dir deploy/slim/auto_compression/datasets/v4_4_test_dataset --use_gpu False \ --enable_mkldnn True --warmup True --precision int8 else echo "unrecgnized model_type" fi