// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif

void InitAndInfer(const std::string &det_model_dir,
                  const std::string &rec_label_file,
                  const std::string &image_file,
                  const fastdeploy::RuntimeOption &option) {
  auto det_model_file =
      det_model_dir + sep + "ch_PP-OCRv3_det_1684x_f32.bmodel";
  auto det_params_file = det_model_dir + sep + "";

  auto cls_model_file =
      det_model_dir + sep + "ch_ppocr_mobile_v2.0_cls_1684x_f32.bmodel";
  auto cls_params_file = det_model_dir + sep + "";

  auto rec_model_file =
      det_model_dir + sep + "ch_PP-OCRv3_rec_1684x_f32.bmodel";
  auto rec_params_file = det_model_dir + sep + "";

  auto format = fastdeploy::ModelFormat::SOPHGO;

  auto det_option = option;
  auto cls_option = option;
  auto rec_option = option;

  // The cls and rec model can inference a batch of images now.
  // User could initialize the inference batch size and set them after create
  // PPOCR model.
  int cls_batch_size = 1;
  int rec_batch_size = 1;

  // If use TRT backend, the dynamic shape will be set as follow.
  // We recommend that users set the length and height of the detection model to
  // a multiple of 32. We also recommend that users set the Trt input shape as
  // follow.
  det_option.SetTrtInputShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
                              {1, 3, 960, 960});
  cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320},
                              {cls_batch_size, 3, 48, 1024});
  rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320},
                              {rec_batch_size, 3, 48, 2304});

  // Users could save TRT cache file to disk as follow.
  // det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt");
  // cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt");
  // rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt");

  auto det_model = fastdeploy::vision::ocr::DBDetector(
      det_model_file, det_params_file, det_option, format);
  auto cls_model = fastdeploy::vision::ocr::Classifier(
      cls_model_file, cls_params_file, cls_option, format);
  auto rec_model = fastdeploy::vision::ocr::Recognizer(
      rec_model_file, rec_params_file, rec_label_file, rec_option, format);

  // Users could enable static shape infer for rec model when deploy PP-OCR on
  // hardware which can not support dynamic shape infer well, like Huawei Ascend
  // series.
  rec_model.GetPreprocessor().SetStaticShapeInfer(true);
  rec_model.GetPreprocessor().SetRecImageShape({3, 48, 584});

  assert(det_model.Initialized());
  assert(cls_model.Initialized());
  assert(rec_model.Initialized());

  // The classification model is optional, so the PP-OCR can also be connected
  // in series as follows auto ppocr_v3 =
  // fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
  auto ppocr_v3 =
      fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);

  // Set inference batch size for cls model and rec model, the value could be -1
  // and 1 to positive infinity. When inference batch size is set to -1, it
  // means that the inference batch size of the cls and rec models will be the
  // same as the number of boxes detected by the det model.
  ppocr_v3.SetClsBatchSize(cls_batch_size);
  ppocr_v3.SetRecBatchSize(rec_batch_size);

  if (!ppocr_v3.Initialized()) {
    std::cerr << "Failed to initialize PP-OCR." << std::endl;
    return;
  }

  auto im = cv::imread(image_file);
  auto im_bak = im.clone();

  fastdeploy::vision::OCRResult result;
  if (!ppocr_v3.Predict(&im, &result)) {
    std::cerr << "Failed to predict." << std::endl;
    return;
  }

  std::cout << result.Str() << std::endl;

  auto vis_im = fastdeploy::vision::VisOcr(im_bak, result);
  cv::imwrite("vis_result.jpg", vis_im);
  std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

int main(int argc, char *argv[]) {
  if (argc < 4) {
    std::cout << "Usage: infer_demo path/to/model "
                 "path/to/rec_label_file path/to/image "
                 "e.g ./infer_demo ./ocr_bmodel "
                 "./ppocr_keys_v1.txt ./12.jpg"
              << std::endl;
    return -1;
  }

  fastdeploy::RuntimeOption option;
  option.UseSophgo();
  option.UseSophgoBackend();

  std::string model_dir = argv[1];
  std::string rec_label_file = argv[2];
  std::string test_image = argv[3];
  InitAndInfer(model_dir, rec_label_file, test_image, option);
  return 0;
}