# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--rec_model", required=True, help="Path of Recognization model of PPOCR." ) parser.add_argument( "--rec_label_file", required=True, help="Path of Recognization model of PPOCR." ) parser.add_argument( "--image", type=str, required=True, help="Path of test image file." ) parser.add_argument( "--device", type=str, default="cpu", help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.", ) parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.", ) return parser.parse_args() def build_option(args): rec_option = fd.RuntimeOption() if args.device.lower() == "gpu": rec_option.use_gpu(args.device_id) return rec_option args = parse_arguments() rec_model_file = os.path.join(args.rec_model, "inference.pdmodel") rec_params_file = os.path.join(args.rec_model, "inference.pdiparams") rec_label_file = args.rec_label_file # Set the runtime option rec_option = build_option(args) # Create the rec_model rec_model = fd.vision.ocr.Recognizer( rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option ) # Read the image im = cv2.imread(args.image) # Predict and return the result result = rec_model.predict(im) # User can infer a batch of images by following code. # result = rec_model.batch_predict([im]) print(result)