# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--det_model", required=True, help="Path of Detection model of PPOCR." ) parser.add_argument( "--image", type=str, required=True, help="Path of test image file." ) parser.add_argument( "--device", type=str, default="cpu", help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.", ) parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.", ) return parser.parse_args() def build_option(args): det_option = fd.RuntimeOption() if args.device.lower() == "gpu": det_option.use_gpu(args.device_id) return det_option args = parse_arguments() det_model_file = os.path.join(args.det_model, "inference.pdmodel") det_params_file = os.path.join(args.det_model, "inference.pdiparams") # Set the runtime option det_option = build_option(args) # Create the det_model det_model = fd.vision.ocr.DBDetector( det_model_file, det_params_file, runtime_option=det_option ) # Set the preporcessing parameters det_model.preprocessor.max_side_len = 960 det_model.postprocessor.det_db_thresh = 0.3 det_model.postprocessor.det_db_box_thresh = 0.6 det_model.postprocessor.det_db_unclip_ratio = 1.5 det_model.postprocessor.det_db_score_mode = "slow" det_model.postprocessor.use_dilation = False # Read the image im = cv2.imread(args.image) # Predict and return the results result = det_model.predict(im) print(result) # Visualize the results vis_im = fd.vision.vis_ppocr(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")