# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn class ParseQLoss(nn.Layer): def __init__(self, **kwargs): super(ParseQLoss, self).__init__() def forward(self, predicts, targets): label = targets[1] # label label_len = targets[2] max_step = paddle.max(label_len).cpu().numpy()[0] + 2 tgt = label[:, :max_step] logits_list = predicts["logits_list"] pad_id = predicts["pad_id"] eos_id = predicts["eos_id"] tgt_out = tgt[:, 1:] loss = 0 loss_numel = 0 n = (tgt_out != pad_id).sum().item() for i, logits in enumerate(logits_list): loss += n * paddle.nn.functional.cross_entropy( input=logits, label=tgt_out.flatten(), ignore_index=pad_id ) loss_numel += n if i == 1: tgt_out = paddle.where(condition=tgt_out == eos_id, x=pad_id, y=tgt_out) n = (tgt_out != pad_id).sum().item() loss /= loss_numel return {"loss": loss}