# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import sys import numpy as np import skimage import paddle import signal import random __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, "../.."))) import copy from paddle.io import Dataset, DataLoader, BatchSampler, DistributedBatchSampler import paddle.distributed as dist from ppocr.data.imaug import transform, create_operators from ppocr.data.simple_dataset import SimpleDataSet, MultiScaleDataSet from ppocr.data.lmdb_dataset import LMDBDataSet, LMDBDataSetSR, LMDBDataSetTableMaster from ppocr.data.pgnet_dataset import PGDataSet from ppocr.data.pubtab_dataset import PubTabDataSet from ppocr.data.multi_scale_sampler import MultiScaleSampler from ppocr.data.latexocr_dataset import LaTeXOCRDataSet # for PaddleX dataset_type TextDetDataset = SimpleDataSet TextRecDataset = SimpleDataSet MSTextRecDataset = MultiScaleDataSet PubTabTableRecDataset = PubTabDataSet KieDataset = SimpleDataSet LaTeXOCRDataSet = LaTeXOCRDataSet __all__ = ["build_dataloader", "transform", "create_operators", "set_signal_handlers"] def term_mp(sig_num, frame): """kill all child processes""" pid = os.getpid() pgid = os.getpgid(os.getpid()) print("main proc {} exit, kill process group " "{}".format(pid, pgid)) os.killpg(pgid, signal.SIGKILL) def set_signal_handlers(): pid = os.getpid() try: pgid = os.getpgid(pid) except AttributeError: # In case `os.getpgid` is not available, no signal handler will be set, # because we cannot do safe cleanup. pass else: # XXX: `term_mp` kills all processes in the process group, which in # some cases includes the parent process of current process and may # cause unexpected results. To solve this problem, we set signal # handlers only when current process is the group leader. In the # future, it would be better to consider killing only descendants of # the current process. if pid == pgid: # support exit using ctrl+c signal.signal(signal.SIGINT, term_mp) signal.signal(signal.SIGTERM, term_mp) def build_dataloader(config, mode, device, logger, seed=None): config = copy.deepcopy(config) support_dict = [ "SimpleDataSet", "LMDBDataSet", "PGDataSet", "PubTabDataSet", "LMDBDataSetSR", "LMDBDataSetTableMaster", "MultiScaleDataSet", "TextDetDataset", "TextRecDataset", "MSTextRecDataset", "PubTabTableRecDataset", "KieDataset", "LaTeXOCRDataSet", ] module_name = config[mode]["dataset"]["name"] assert module_name in support_dict, Exception( "DataSet only support {}".format(support_dict) ) assert mode in ["Train", "Eval", "Test"], "Mode should be Train, Eval or Test." dataset = eval(module_name)(config, mode, logger, seed) loader_config = config[mode]["loader"] batch_size = loader_config["batch_size_per_card"] drop_last = loader_config["drop_last"] shuffle = loader_config["shuffle"] num_workers = loader_config["num_workers"] if "use_shared_memory" in loader_config.keys(): use_shared_memory = loader_config["use_shared_memory"] else: use_shared_memory = True if mode == "Train": # Distribute data to multiple cards if "sampler" in config[mode]: config_sampler = config[mode]["sampler"] sampler_name = config_sampler.pop("name") batch_sampler = eval(sampler_name)(dataset, **config_sampler) else: batch_sampler = DistributedBatchSampler( dataset=dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, ) else: # Distribute data to single card batch_sampler = BatchSampler( dataset=dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last ) if "collate_fn" in loader_config: from . import collate_fn collate_fn = getattr(collate_fn, loader_config["collate_fn"])() else: collate_fn = None data_loader = DataLoader( dataset=dataset, batch_sampler=batch_sampler, places=device, num_workers=num_workers, return_list=True, use_shared_memory=use_shared_memory, collate_fn=collate_fn, ) return data_loader