---
comments: true
---

# PaddleOCR Quick Start

**Note:** This tutorial mainly introduces the usage of PP-OCR series models, please refer to [PP-Structure Quick Start](../ppstructure/overview.en.md) for the quick use of document analysis related functions.

## 1. Installation

### 1.1 Install PaddlePaddle

> If you do not have a Python environment, please refer to [Environment Preparation](./environment.en.md).

- If you have CUDA 11 installed on your machine, please run the following command to install

  ```bash linenums="1"
  pip install paddlepaddle-gpu
  ```

- If you have no available GPU on your machine, please run the following command to install the CPU version

  ```bash linenums="1"
  python -m pip install paddlepaddle
  ```

For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/en/install/quick) for operation.

### 1.2 Install PaddleOCR Whl Package

```bash linenums="1"
pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+
```

- **For windows users:** If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. Please try to download Shapely whl file [here](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely).

  Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found)

## 2. Easy-to-Use

### 2.1 Use by Command Line

PaddleOCR provides a series of test images, click [here](https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip) to download, and then switch to the corresponding directory in the terminal

```bash linenums="1"
cd /path/to/ppocr_img
```

If you do not use the provided test image, you can replace the following `--image_dir` parameter with the corresponding test image path

#### 2.1.1 Chinese and English Model

- Detection, direction classification and recognition: set the parameter`--use_gpu false` to disable the gpu device

  ```bash linenums="1"
  paddleocr --image_dir ./imgs_en/img_12.jpg --use_angle_cls true --lang en --use_gpu false
  ```

  Output will be a list, each item contains bounding box, text and recognition confidence

  ```bash linenums="1"
  [[[441.0, 174.0], [1166.0, 176.0], [1165.0, 222.0], [441.0, 221.0]], ('ACKNOWLEDGEMENTS', 0.9971134662628174)]
  [[[403.0, 346.0], [1204.0, 348.0], [1204.0, 384.0], [402.0, 383.0]], ('We would like to thank all the designers and', 0.9761400818824768)]
  [[[403.0, 396.0], [1204.0, 398.0], [1204.0, 434.0], [402.0, 433.0]], ('contributors who have been involved in the', 0.9791957139968872)]
  ......
  ```

  pdf file is also supported, you can infer the first few pages by using the `page_num` parameter, the default is 0, which means infer all pages

  ```bash linenums="1"
  paddleocr --image_dir ./xxx.pdf --use_angle_cls true --use_gpu false --page_num 2
  ```

- Only detection: set `--rec` to `false`

  ```bash linenums="1"
  paddleocr --image_dir ./imgs_en/img_12.jpg --rec false
  ```

  Output will be a list, each item only contains bounding box

  ```bash linenums="1"
  [[397.0, 802.0], [1092.0, 802.0], [1092.0, 841.0], [397.0, 841.0]]
  [[397.0, 750.0], [1211.0, 750.0], [1211.0, 789.0], [397.0, 789.0]]
  [[397.0, 702.0], [1209.0, 698.0], [1209.0, 734.0], [397.0, 738.0]]
  ......
  ```

- Only recognition: set `--det` to `false`

  ```bash linenums="1"
  paddleocr --image_dir ./imgs_words_en/word_10.png --det false --lang en
  ```

  Output will be a list, each item contains text and recognition confidence

  ```bash linenums="1"
  ['PAIN', 0.9934559464454651]
  ```

**Version**
paddleocr uses the PP-OCRv4 model by default(`--ocr_version PP-OCRv4`). If you want to use other versions, you can set the parameter `--ocr_version`, the specific version description is as follows:

|  version name |  description |
|    ---    |   ---   |
| PP-OCRv4 | support Chinese and English detection and recognition, direction classifier, support multilingual recognition |
| PP-OCRv3 | support Chinese and English detection and recognition, direction classifier, support multilingual recognition |
| PP-OCRv2 | only supports Chinese and English detection and recognition, direction classifier, multilingual model is not updated |
| PP-OCR   | support Chinese and English detection and recognition, direction classifier, support multilingual recognition |

If you want to add your own trained model, you can add model links and keys in [paddleocr](https://github.com/PaddlePaddle/PaddleOCR/blob/c65a66c5fd37dee64916a8b2a2c84ea273d98cac/paddleocr.py) and recompile.

More whl package usage can be found in [whl package](./blog/whl.en.md)

#### 2.1.2 Multi-language Model

PaddleOCR currently supports 80 languages, which can be switched by modifying the `--lang` parameter.

``` bash
paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en
```

![](./images/254.jpg)

![](./images/multi_lang/img_02.jpg)

The result is a list, each item contains a text box, text and recognition confidence

```text linenums="1"
[[[67.0, 51.0], [327.0, 46.0], [327.0, 74.0], [68.0, 80.0]], ('PHOCAPITAL', 0.9944712519645691)]
[[[72.0, 92.0], [453.0, 84.0], [454.0, 114.0], [73.0, 122.0]], ('107 State Street', 0.9744491577148438)]
[[[69.0, 135.0], [501.0, 125.0], [501.0, 156.0], [70.0, 165.0]], ('Montpelier Vermont', 0.9357033967971802)]
......
```

Commonly used multilingual abbreviations include

| Language            | Abbreviation |      | Language | Abbreviation |      | Language | Abbreviation |
| ------------------- | ------------ | ---- | -------- | ------------ | ---- | -------- | ------------ |
| Chinese & English   | ch           |      | French   | fr           |      | Japanese | japan        |
| English             | en           |      | German   | german       |      | Korean   | korean       |
| Chinese Traditional | chinese_cht  |      | Italian  | it           |      | Russian  | ru           |

A list of all languages and their corresponding abbreviations can be found in [Multi-Language Model Tutorial](./blog/multi_languages.en.md)

### 2.2 Use by Code

#### 2.2.1 Chinese & English Model and Multilingual Model

- detection, angle classification and recognition:

```python linenums="1"
from paddleocr import PaddleOCR,draw_ocr
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan`
# to switch the language model in order.
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
img_path = './imgs_en/img_12.jpg'
result = ocr.ocr(img_path, cls=True)
for idx in range(len(result)):
    res = result[idx]
    for line in res:
        print(line)


# draw result
from PIL import Image
result = result[0]
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item contains bounding box, text and recognition confidence

```bash linenums="1"
[[[441.0, 174.0], [1166.0, 176.0], [1165.0, 222.0], [441.0, 221.0]], ('ACKNOWLEDGEMENTS', 0.9971134662628174)]
  [[[403.0, 346.0], [1204.0, 348.0], [1204.0, 384.0], [402.0, 383.0]], ('We would like to thank all the designers and', 0.9761400818824768)]
  [[[403.0, 396.0], [1204.0, 398.0], [1204.0, 434.0], [402.0, 433.0]], ('contributors who have been involved in the', 0.9791957139968872)]
  ......
```

Visualization of results

![](./images/11_det_rec.jpg)

If the input is a PDF file, you can refer to the following code for visualization

```python linenums="1"
from paddleocr import PaddleOCR, draw_ocr

# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan`
# to switch the language model in order.
PAGE_NUM = 10 # Set the recognition page number
pdf_path = 'default.pdf'
ocr = PaddleOCR(use_angle_cls=True, lang="ch", page_num=PAGE_NUM)  # need to run only once to download and load model into memory
# ocr = PaddleOCR(use_angle_cls=True, lang="ch", page_num=PAGE_NUM,use_gpu=0) # To Use GPU,uncomment this line and comment the above one.
result = ocr.ocr(pdf_path, cls=True)
for idx in range(len(result)):
    res = result[idx]
    if res == None: # Skip when empty result detected to avoid TypeError:NoneType
        print(f"[DEBUG] Empty page {idx+1} detected, skip it.")
        continue
    for line in res:
        print(line)

# draw the result
import fitz
from PIL import Image
import cv2
import numpy as np
imgs = []
with fitz.open(pdf_path) as pdf:
    for pg in range(0, PAGE_NUM):
        page = pdf[pg]
        mat = fitz.Matrix(2, 2)
        pm = page.get_pixmap(matrix=mat, alpha=False)
        # if width or height > 2000 pixels, don't enlarge the image
        if pm.width > 2000 or pm.height > 2000:
            pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
        img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        imgs.append(img)
for idx in range(len(result)):
    res = result[idx]
    if res == None:
        continue
    image = imgs[idx]
    boxes = [line[0] for line in res]
    txts = [line[1][0] for line in res]
    scores = [line[1][1] for line in res]
    im_show = draw_ocr(image, boxes, txts, scores, font_path='doc/fonts/simfang.ttf')
    im_show = Image.fromarray(im_show)
    im_show.save('result_page_{}.jpg'.format(idx))
```

- Detection and Recognition Using Sliding Windows

To perform OCR using sliding windows, the following code snippet can be employed:

```python linenums="1"
from paddleocr import PaddleOCR
from PIL import Image, ImageDraw, ImageFont

# Initialize OCR engine
ocr = PaddleOCR(use_angle_cls=True, lang="en")

img_path = "./very_large_image.jpg"
slice = {'horizontal_stride': 300, 'vertical_stride': 500, 'merge_x_thres': 50, 'merge_y_thres': 35}
results = ocr.ocr(img_path, cls=True, slice=slice)

# Load image
image = Image.open(img_path).convert("RGB")
draw = ImageDraw.Draw(image)
font = ImageFont.truetype("./doc/fonts/simfang.ttf", size=20)  # Adjust size as needed

# Process and draw results
for res in results:
    for line in res:
        box = [tuple(point) for point in line[0]]
        # Finding the bounding box
        box = [(min(point[0] for point in box), min(point[1] for point in box)),
               (max(point[0] for point in box), max(point[1] for point in box))]
        txt = line[1][0]
        draw.rectangle(box, outline="red", width=2)  # Draw rectangle
        draw.text((box[0][0], box[0][1] - 25), txt, fill="blue", font=font)  # Draw text above the box

# Save result
image.save("result.jpg")

```

This example initializes the PaddleOCR instance with angle classification enabled and sets the language to English. The `ocr` method is then called with several parameters to customize the detection and recognition process, including the `slice` parameter for handling image slices.

For a more comprehensive understanding of the slicing operation, please refer to the [slice operation documentation](./blog/slice.en.md).

## 3. Summary

In this section, you have mastered the use of PaddleOCR whl package.

PaddleX provides a high-quality ecological model of the paddle. It is a one-stop full-process high-efficiency development platform for training, pressing and pushing. Its mission is to help AI technology to be implemented quickly. The vision is to make everyone an AI Developer! Currently PP-OCRv4 has been launched on PaddleX, you can enter [General OCR](https://aistudio.baidu.com/aistudio/modelsdetail?modelId=286) to experience the whole process of model training, compression and inference deployment.