# SATRN
- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
- [3.1 训练](#3-1)
- [3.2 评估](#3-2)
- [3.3 预测](#3-3)
- [4. 推理部署](#4)
- [4.1 Python推理](#4-1)
- [4.2 C++推理](#4-2)
- [4.3 Serving服务化部署](#4-3)
- [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)
## 1. 算法简介
论文信息:
> [On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention](https://arxiv.org/abs/1910.04396)
> Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, Hwalsuk Lee
> CVPR, 2020
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
|---|---|---|---|---|
|SATRN|ShallowCNN|88.05%|[configs/rec/rec_satrn.yml](../../configs/rec/rec_satrn.yml)|[训练模型](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a)|
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
## 3. 模型训练、评估、预测
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
- 训练
在完成数据准备后,便可以启动训练,训练命令如下:
```
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_satrn.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_satrn.yml
```
- 评估
```
# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
- 预测:
```
# 预测使用的配置文件必须与训练一致
python3 tools/infer_rec.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
## 4. 推理部署
### 4.1 Python推理
首先将SATRN文本识别训练过程中保存的模型,转换成inference model。( [模型下载地址](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a) ),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model=./rec_satrn/best_accuracy Global.save_inference_dir=./inference/rec_satrn
```
SATRN文本识别模型推理,可以执行如下命令:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_satrn/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="SATRN" --rec_char_dict_path="ppocr/utils/dict90.txt" --max_text_length=30 --use_space_char=False
```
### 4.2 C++推理
由于C++预处理后处理还未支持SATRN,所以暂未支持
### 4.3 Serving服务化部署
暂不支持
### 4.4 更多推理部署
暂不支持
## 5. FAQ
## 引用
```bibtex
@article{lee2019recognizing,
title={On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention},
author={Junyeop Lee and Sungrae Park and Jeonghun Baek and Seong Joon Oh and Seonghyeon Kim and Hwalsuk Lee},
year={2019},
eprint={1910.04396},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```