# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

from paddle_serving_client import Client
import sys
import numpy as np
import base64
import os
import cv2
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from ocr_reader import OCRReader
import codecs

client = Client()
# TODO:load_client need to load more than one client model.
# this need to figure out some details.
client.load_client_config(sys.argv[1:])
client.connect(["127.0.0.1:8181"])

import paddle

test_img_dir = "../../doc/imgs/1.jpg"

ocr_reader = OCRReader(char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")


def cv2_to_base64(image):
    return base64.b64encode(image).decode("utf8")  # data.tostring()).decode('utf8')


def _check_image_file(path):
    img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff", "gif"}
    return any([path.lower().endswith(e) for e in img_end])


test_img_list = []
if os.path.isfile(test_img_dir) and _check_image_file(test_img_dir):
    test_img_list.append(test_img_dir)
elif os.path.isdir(test_img_dir):
    for single_file in os.listdir(test_img_dir):
        file_path = os.path.join(test_img_dir, single_file)
        if os.path.isfile(file_path) and _check_image_file(file_path):
            test_img_list.append(file_path)
if len(test_img_list) == 0:
    raise Exception("not found any Crop_img file in {}".format(test_img_dir))

for img_file in test_img_list:
    with open(img_file, "rb") as file:
        image_data = file.read()
    image = cv2_to_base64(image_data)
    res_list = []
    fetch_map = client.predict(feed={"x": image}, fetch=[], batch=True)
    if fetch_map is None:
        print("no results")
    else:
        if "text" in fetch_map:
            for x in fetch_map["text"]:
                x = codecs.encode(x)
                words = base64.b64decode(x).decode("utf-8")
                res_list.append(words)
        else:
            try:
                one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True)
                for res in one_batch_res:
                    res_list.append(res[0])
            except:
                print("no results")
        res = {"res": str(res_list)}
        print(res)