// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" #ifdef WIN32 const char sep = '\\'; #else const char sep = '/'; #endif void InitAndInfer(const std::string &cls_model_dir, const std::string &image_file, const fastdeploy::RuntimeOption &option) { auto cls_model_file = cls_model_dir + sep + "inference.pdmodel"; auto cls_params_file = cls_model_dir + sep + "inference.pdiparams"; auto cls_option = option; auto cls_model = fastdeploy::vision::ocr::Classifier( cls_model_file, cls_params_file, cls_option); assert(cls_model.Initialized()); // Parameters settings for pre and post processing of Cls Model. cls_model.GetPostprocessor().SetClsThresh(0.9); auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::OCRResult result; if (!cls_model.Predict(im, &result)) { std::cerr << "Failed to predict." << std::endl; return; } // User can infer a batch of images by following code. // if (!cls_model.BatchPredict({im}, &result)) { // std::cerr << "Failed to predict." << std::endl; // return; // } std::cout << result.Str() << std::endl; } int main(int argc, char *argv[]) { if (argc < 4) { std::cout << "Usage: infer_demo path/to/cls_model path/to/image " "run_option, " "e.g ./infer_demo ./ch_ppocr_mobile_v2.0_cls_infer ./12.jpg 0" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with gpu;." << std::endl; return -1; } fastdeploy::RuntimeOption option; int flag = std::atoi(argv[3]); if (flag == 0) { option.UseCpu(); } else if (flag == 1) { option.UseGpu(); } std::string cls_model_dir = argv[1]; std::string test_image = argv[2]; InitAndInfer(cls_model_dir, test_image, option); return 0; }