You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

173 lines
5.6 KiB
Python

8 months ago
import os
import sys
import subprocess
import cv2
import copy
import numpy as np
from PIL import Image
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
import tools.infer.predict_cls as predict_cls
from ppocr.utils.utility import get_image_file_list, check_and_read
from tools.infer.utility import (
get_rotate_crop_image,
get_minarea_rect_crop,
slice_generator,
merge_fragmented,
)
class TextSystem(object):
def __init__(self, args):
self.text_detector = predict_det.TextDetector(args)
self.text_recognizer = predict_rec.TextRecognizer(args)
self.use_angle_cls = args.use_angle_cls
self.drop_score = args.drop_score
if self.use_angle_cls:
self.text_classifier = predict_cls.TextClassifier(args)
self.args = args
self.crop_image_res_index = 0
def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
os.makedirs(output_dir, exist_ok=True)
bbox_num = len(img_crop_list)
for bno in range(bbox_num):
cv2.imwrite(
os.path.join(
output_dir, f"mg_crop_{bno + self.crop_image_res_index}.jpg"
),
img_crop_list[bno],
)
self.crop_image_res_index += bbox_num
def __call__(self, img, cls=True, slice={}):
if img is None:
return None, None, {}
ori_im = img.copy()
if slice:
slice_gen = slice_generator(
img,
horizontal_stride=slice["horizontal_stride"],
vertical_stride=slice["vertical_stride"],
)
elapsed = []
dt_slice_boxes = []
for slice_crop, v_start, h_start in slice_gen:
dt_boxes, elapse = self.text_detector(slice_crop, use_slice=True)
if dt_boxes.size:
dt_boxes[:, :, 0] += h_start
dt_boxes[:, :, 1] += v_start
dt_slice_boxes.append(dt_boxes)
elapsed.append(elapse)
dt_boxes = np.concatenate(dt_slice_boxes)
dt_boxes = merge_fragmented(
boxes=dt_boxes,
x_threshold=slice["merge_x_thres"],
y_threshold=slice["merge_y_thres"],
)
elapse = sum(elapsed)
else:
dt_boxes, elapse = self.text_detector(img)
if dt_boxes is None:
return None, None, {}
img_crop_list = []
dt_boxes = sorted_boxes(dt_boxes)
for bno in range(len(dt_boxes)):
tmp_box = copy.deepcopy(dt_boxes[bno])
if self.args.det_box_type == "quad":
img_crop = get_rotate_crop_image(ori_im, tmp_box)
else:
img_crop = get_minarea_rect_crop(ori_im, tmp_box)
img_crop_list.append(img_crop)
if self.use_angle_cls and cls:
img_crop_list, angle_list, elapse = self.text_classifier(img_crop_list)
if len(img_crop_list) > 1000:
pass
rec_res, elapse = self.text_recognizer(img_crop_list)
filter_boxes, filter_rec_res = [], []
for box, rec_result in zip(dt_boxes, rec_res):
text, score = rec_result[0], rec_result[1]
if score >= self.drop_score:
filter_boxes.append(box)
filter_rec_res.append(rec_result)
return filter_boxes, filter_rec_res, {}
def sorted_boxes(dt_boxes):
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
for j in range(i, -1, -1):
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and (
_boxes[j + 1][0][0] < _boxes[j][0][0]
):
tmp = _boxes[j]
_boxes[j] = _boxes[j + 1]
_boxes[j + 1] = tmp
else:
break
return _boxes
def main(args):
image_file_list = get_image_file_list(args.image_dir)
image_file_list = image_file_list[args.process_id:: args.total_process_num]
text_sys = TextSystem(args)
# Warm-up (optional)
if args.warmup:
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
for i in range(10):
text_sys(img)
for idx, image_file in enumerate(image_file_list):
img, flag_gif, flag_pdf = check_and_read(image_file)
if not flag_gif and not flag_pdf:
img = cv2.imread(image_file)
if not flag_pdf:
if img is None:
continue
imgs = [img]
else:
page_num = args.page_num
if page_num > len(img) or page_num == 0:
page_num = len(img)
imgs = img[:page_num]
for index, img in enumerate(imgs):
dt_boxes, rec_res, _ = text_sys(img)
# Output the recognized text
for text, _ in rec_res:
print(f"{text}")
if __name__ == "__main__":
args = utility.parse_args()
if args.use_mp:
p_list = []
total_process_num = args.total_process_num
for process_id in range(total_process_num):
cmd = (
[sys.executable, "-u"]
+ sys.argv
+ ["--process_id={}".format(process_id), "--use_mp={}".format(False)]
)
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
p_list.append(p)
for p in p_list:
p.wait()
else:
main(args)