You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
7.3 KiB
Python
217 lines
7.3 KiB
Python
8 months ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import logging
|
||
|
import os
|
||
|
import cv2
|
||
|
import random
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import importlib.util
|
||
|
import sys
|
||
|
import subprocess
|
||
|
|
||
|
|
||
|
def print_dict(d, logger, delimiter=0):
|
||
|
"""
|
||
|
Recursively visualize a dict and
|
||
|
indenting acrrording by the relationship of keys.
|
||
|
"""
|
||
|
for k, v in sorted(d.items()):
|
||
|
if isinstance(v, dict):
|
||
|
logger.info("{}{} : ".format(delimiter * " ", str(k)))
|
||
|
print_dict(v, logger, delimiter + 4)
|
||
|
elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
|
||
|
logger.info("{}{} : ".format(delimiter * " ", str(k)))
|
||
|
for value in v:
|
||
|
print_dict(value, logger, delimiter + 4)
|
||
|
else:
|
||
|
logger.info("{}{} : {}".format(delimiter * " ", k, v))
|
||
|
|
||
|
|
||
|
def get_check_global_params(mode):
|
||
|
check_params = [
|
||
|
"use_gpu",
|
||
|
"max_text_length",
|
||
|
"image_shape",
|
||
|
"image_shape",
|
||
|
"character_type",
|
||
|
"loss_type",
|
||
|
]
|
||
|
if mode == "train_eval":
|
||
|
check_params = check_params + [
|
||
|
"train_batch_size_per_card",
|
||
|
"test_batch_size_per_card",
|
||
|
]
|
||
|
elif mode == "test":
|
||
|
check_params = check_params + ["test_batch_size_per_card"]
|
||
|
return check_params
|
||
|
|
||
|
|
||
|
def _check_image_file(path):
|
||
|
img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff", "gif", "pdf"}
|
||
|
return any([path.lower().endswith(e) for e in img_end])
|
||
|
|
||
|
|
||
|
def get_image_file_list(img_file, infer_list=None):
|
||
|
imgs_lists = []
|
||
|
if infer_list and not os.path.exists(infer_list):
|
||
|
raise Exception("not found infer list {}".format(infer_list))
|
||
|
if infer_list:
|
||
|
with open(infer_list, "r") as f:
|
||
|
lines = f.readlines()
|
||
|
for line in lines:
|
||
|
image_path = line.strip().split("\t")[0]
|
||
|
image_path = os.path.join(img_file, image_path)
|
||
|
imgs_lists.append(image_path)
|
||
|
else:
|
||
|
if img_file is None or not os.path.exists(img_file):
|
||
|
raise Exception("not found any Crop_img file in {}".format(img_file))
|
||
|
|
||
|
img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff", "gif", "pdf"}
|
||
|
if os.path.isfile(img_file) and _check_image_file(img_file):
|
||
|
imgs_lists.append(img_file)
|
||
|
elif os.path.isdir(img_file):
|
||
|
for single_file in os.listdir(img_file):
|
||
|
file_path = os.path.join(img_file, single_file)
|
||
|
if os.path.isfile(file_path) and _check_image_file(file_path):
|
||
|
imgs_lists.append(file_path)
|
||
|
|
||
|
if len(imgs_lists) == 0:
|
||
|
raise Exception("not found any Crop_img file in {}".format(img_file))
|
||
|
imgs_lists = sorted(imgs_lists)
|
||
|
return imgs_lists
|
||
|
|
||
|
|
||
|
def binarize_img(img):
|
||
|
if len(img.shape) == 3 and img.shape[2] == 3:
|
||
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # conversion to grayscale image
|
||
|
# use cv2 threshold binarization
|
||
|
_, gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||
|
img = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
|
||
|
return img
|
||
|
|
||
|
|
||
|
def alpha_to_color(img, alpha_color=(255, 255, 255)):
|
||
|
if len(img.shape) == 3 and img.shape[2] == 4:
|
||
|
B, G, R, A = cv2.split(img)
|
||
|
alpha = A / 255
|
||
|
|
||
|
R = (alpha_color[0] * (1 - alpha) + R * alpha).astype(np.uint8)
|
||
|
G = (alpha_color[1] * (1 - alpha) + G * alpha).astype(np.uint8)
|
||
|
B = (alpha_color[2] * (1 - alpha) + B * alpha).astype(np.uint8)
|
||
|
|
||
|
img = cv2.merge((B, G, R))
|
||
|
return img
|
||
|
|
||
|
|
||
|
def check_and_read(img_path):
|
||
|
if os.path.basename(img_path)[-3:].lower() == "gif":
|
||
|
gif = cv2.VideoCapture(img_path)
|
||
|
ret, frame = gif.read()
|
||
|
if not ret:
|
||
|
logger = logging.getLogger("ppocr")
|
||
|
logger.info("Cannot read {}. This gif image maybe corrupted.")
|
||
|
return None, False
|
||
|
if len(frame.shape) == 2 or frame.shape[-1] == 1:
|
||
|
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
||
|
imgvalue = frame[:, :, ::-1]
|
||
|
return imgvalue, True, False
|
||
|
elif os.path.basename(img_path)[-3:].lower() == "pdf":
|
||
|
from paddle.utils import try_import
|
||
|
|
||
|
fitz = try_import("fitz")
|
||
|
from PIL import Image
|
||
|
|
||
|
imgs = []
|
||
|
with fitz.open(img_path) as pdf:
|
||
|
for pg in range(0, pdf.page_count):
|
||
|
page = pdf[pg]
|
||
|
mat = fitz.Matrix(2, 2)
|
||
|
pm = page.get_pixmap(matrix=mat, alpha=False)
|
||
|
|
||
|
# if width or height > 2000 pixels, don't enlarge the image
|
||
|
if pm.width > 2000 or pm.height > 2000:
|
||
|
pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
|
||
|
|
||
|
img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
|
||
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||
|
imgs.append(img)
|
||
|
return imgs, False, True
|
||
|
return None, False, False
|
||
|
|
||
|
|
||
|
def load_vqa_bio_label_maps(label_map_path):
|
||
|
with open(label_map_path, "r", encoding="utf-8") as fin:
|
||
|
lines = fin.readlines()
|
||
|
old_lines = [line.strip() for line in lines]
|
||
|
lines = ["O"]
|
||
|
for line in old_lines:
|
||
|
# "O" has already been in lines
|
||
|
if line.upper() in ["OTHER", "OTHERS", "IGNORE"]:
|
||
|
continue
|
||
|
lines.append(line)
|
||
|
labels = ["O"]
|
||
|
for line in lines[1:]:
|
||
|
labels.append("B-" + line)
|
||
|
labels.append("I-" + line)
|
||
|
label2id_map = {label.upper(): idx for idx, label in enumerate(labels)}
|
||
|
id2label_map = {idx: label.upper() for idx, label in enumerate(labels)}
|
||
|
return label2id_map, id2label_map
|
||
|
|
||
|
|
||
|
def set_seed(seed=1024):
|
||
|
random.seed(seed)
|
||
|
np.random.seed(seed)
|
||
|
paddle.seed(seed)
|
||
|
|
||
|
|
||
|
def check_install(module_name, install_name):
|
||
|
spec = importlib.util.find_spec(module_name)
|
||
|
if spec is None:
|
||
|
print(f"Warnning! The {module_name} module is NOT installed")
|
||
|
print(
|
||
|
f"Try install {module_name} module automatically. You can also try to install manually by pip install {install_name}."
|
||
|
)
|
||
|
python = sys.executable
|
||
|
try:
|
||
|
subprocess.check_call(
|
||
|
[python, "-m", "pip", "install", install_name],
|
||
|
stdout=subprocess.DEVNULL,
|
||
|
)
|
||
|
print(f"The {module_name} module is now installed")
|
||
|
except subprocess.CalledProcessError as exc:
|
||
|
raise Exception(f"Install {module_name} failed, please install manually")
|
||
|
else:
|
||
|
print(f"{module_name} has been installed.")
|
||
|
|
||
|
|
||
|
class AverageMeter:
|
||
|
def __init__(self):
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self):
|
||
|
"""reset"""
|
||
|
self.val = 0
|
||
|
self.avg = 0
|
||
|
self.sum = 0
|
||
|
self.count = 0
|
||
|
|
||
|
def update(self, val, n=1):
|
||
|
"""update"""
|
||
|
self.val = val
|
||
|
self.sum += val * n
|
||
|
self.count += n
|
||
|
self.avg = self.sum / self.count
|