You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

122 lines
3.5 KiB
Python

8 months ago
import paddle
from paddle import nn
# refer from: https://github.com/ViTAE-Transformer/I3CL/blob/736c80237f66d352d488e83b05f3e33c55201317/mmdet/models/detectors/intra_cl_module.py
class IntraCLBlock(nn.Layer):
def __init__(self, in_channels=96, reduce_factor=4):
super(IntraCLBlock, self).__init__()
self.channels = in_channels
self.rf = reduce_factor
weight_attr = paddle.nn.initializer.KaimingUniform()
self.conv1x1_reduce_channel = nn.Conv2D(
self.channels, self.channels // self.rf, kernel_size=1, stride=1, padding=0
)
self.conv1x1_return_channel = nn.Conv2D(
self.channels // self.rf, self.channels, kernel_size=1, stride=1, padding=0
)
self.v_layer_7x1 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(7, 1),
stride=(1, 1),
padding=(3, 0),
)
self.v_layer_5x1 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(5, 1),
stride=(1, 1),
padding=(2, 0),
)
self.v_layer_3x1 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(3, 1),
stride=(1, 1),
padding=(1, 0),
)
self.q_layer_1x7 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(1, 7),
stride=(1, 1),
padding=(0, 3),
)
self.q_layer_1x5 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(1, 5),
stride=(1, 1),
padding=(0, 2),
)
self.q_layer_1x3 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(1, 3),
stride=(1, 1),
padding=(0, 1),
)
# base
self.c_layer_7x7 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(7, 7),
stride=(1, 1),
padding=(3, 3),
)
self.c_layer_5x5 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(5, 5),
stride=(1, 1),
padding=(2, 2),
)
self.c_layer_3x3 = nn.Conv2D(
self.channels // self.rf,
self.channels // self.rf,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.bn = nn.BatchNorm2D(self.channels)
self.relu = nn.ReLU()
def forward(self, x):
x_new = self.conv1x1_reduce_channel(x)
x_7_c = self.c_layer_7x7(x_new)
x_7_v = self.v_layer_7x1(x_new)
x_7_q = self.q_layer_1x7(x_new)
x_7 = x_7_c + x_7_v + x_7_q
x_5_c = self.c_layer_5x5(x_7)
x_5_v = self.v_layer_5x1(x_7)
x_5_q = self.q_layer_1x5(x_7)
x_5 = x_5_c + x_5_v + x_5_q
x_3_c = self.c_layer_3x3(x_5)
x_3_v = self.v_layer_3x1(x_5)
x_3_q = self.q_layer_1x3(x_5)
x_3 = x_3_c + x_3_v + x_3_q
x_relation = self.conv1x1_return_channel(x_3)
x_relation = self.bn(x_relation)
x_relation = self.relu(x_relation)
return x + x_relation
def build_intraclblock_list(num_block):
IntraCLBlock_list = nn.LayerList()
for i in range(num_block):
IntraCLBlock_list.append(IntraCLBlock())
return IntraCLBlock_list