You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
305 lines
11 KiB
Python
305 lines
11 KiB
Python
8 months ago
|
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
This code is refer from:
|
||
|
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/ppdet/modeling/necks/fpn.py
|
||
|
"""
|
||
|
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import ParamAttr
|
||
|
from paddle.nn.initializer import XavierUniform
|
||
|
from paddle.nn.initializer import Normal
|
||
|
from paddle.regularizer import L2Decay
|
||
|
|
||
|
__all__ = ["FCEFPN"]
|
||
|
|
||
|
|
||
|
class ConvNormLayer(nn.Layer):
|
||
|
def __init__(
|
||
|
self,
|
||
|
ch_in,
|
||
|
ch_out,
|
||
|
filter_size,
|
||
|
stride,
|
||
|
groups=1,
|
||
|
norm_type="bn",
|
||
|
norm_decay=0.0,
|
||
|
norm_groups=32,
|
||
|
lr_scale=1.0,
|
||
|
freeze_norm=False,
|
||
|
initializer=Normal(mean=0.0, std=0.01),
|
||
|
):
|
||
|
super(ConvNormLayer, self).__init__()
|
||
|
assert norm_type in ["bn", "sync_bn", "gn"]
|
||
|
|
||
|
bias_attr = False
|
||
|
|
||
|
self.conv = nn.Conv2D(
|
||
|
in_channels=ch_in,
|
||
|
out_channels=ch_out,
|
||
|
kernel_size=filter_size,
|
||
|
stride=stride,
|
||
|
padding=(filter_size - 1) // 2,
|
||
|
groups=groups,
|
||
|
weight_attr=ParamAttr(initializer=initializer, learning_rate=1.0),
|
||
|
bias_attr=bias_attr,
|
||
|
)
|
||
|
|
||
|
norm_lr = 0.0 if freeze_norm else 1.0
|
||
|
param_attr = ParamAttr(
|
||
|
learning_rate=norm_lr,
|
||
|
regularizer=L2Decay(norm_decay) if norm_decay is not None else None,
|
||
|
)
|
||
|
bias_attr = ParamAttr(
|
||
|
learning_rate=norm_lr,
|
||
|
regularizer=L2Decay(norm_decay) if norm_decay is not None else None,
|
||
|
)
|
||
|
if norm_type == "bn":
|
||
|
self.norm = nn.BatchNorm2D(
|
||
|
ch_out, weight_attr=param_attr, bias_attr=bias_attr
|
||
|
)
|
||
|
elif norm_type == "sync_bn":
|
||
|
self.norm = nn.SyncBatchNorm(
|
||
|
ch_out, weight_attr=param_attr, bias_attr=bias_attr
|
||
|
)
|
||
|
elif norm_type == "gn":
|
||
|
self.norm = nn.GroupNorm(
|
||
|
num_groups=norm_groups,
|
||
|
num_channels=ch_out,
|
||
|
weight_attr=param_attr,
|
||
|
bias_attr=bias_attr,
|
||
|
)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
out = self.conv(inputs)
|
||
|
out = self.norm(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class FCEFPN(nn.Layer):
|
||
|
"""
|
||
|
Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
|
||
|
Args:
|
||
|
in_channels (list[int]): input channels of each level which can be
|
||
|
derived from the output shape of backbone by from_config
|
||
|
out_channels (list[int]): output channel of each level
|
||
|
spatial_scales (list[float]): the spatial scales between input feature
|
||
|
maps and original input image which can be derived from the output
|
||
|
shape of backbone by from_config
|
||
|
has_extra_convs (bool): whether to add extra conv to the last level.
|
||
|
default False
|
||
|
extra_stage (int): the number of extra stages added to the last level.
|
||
|
default 1
|
||
|
use_c5 (bool): Whether to use c5 as the input of extra stage,
|
||
|
otherwise p5 is used. default True
|
||
|
norm_type (string|None): The normalization type in FPN module. If
|
||
|
norm_type is None, norm will not be used after conv and if
|
||
|
norm_type is string, bn, gn, sync_bn are available. default None
|
||
|
norm_decay (float): weight decay for normalization layer weights.
|
||
|
default 0.
|
||
|
freeze_norm (bool): whether to freeze normalization layer.
|
||
|
default False
|
||
|
relu_before_extra_convs (bool): whether to add relu before extra convs.
|
||
|
default False
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
spatial_scales=[0.25, 0.125, 0.0625, 0.03125],
|
||
|
has_extra_convs=False,
|
||
|
extra_stage=1,
|
||
|
use_c5=True,
|
||
|
norm_type=None,
|
||
|
norm_decay=0.0,
|
||
|
freeze_norm=False,
|
||
|
relu_before_extra_convs=True,
|
||
|
):
|
||
|
super(FCEFPN, self).__init__()
|
||
|
self.out_channels = out_channels
|
||
|
for s in range(extra_stage):
|
||
|
spatial_scales = spatial_scales + [spatial_scales[-1] / 2.0]
|
||
|
self.spatial_scales = spatial_scales
|
||
|
self.has_extra_convs = has_extra_convs
|
||
|
self.extra_stage = extra_stage
|
||
|
self.use_c5 = use_c5
|
||
|
self.relu_before_extra_convs = relu_before_extra_convs
|
||
|
self.norm_type = norm_type
|
||
|
self.norm_decay = norm_decay
|
||
|
self.freeze_norm = freeze_norm
|
||
|
|
||
|
self.lateral_convs = []
|
||
|
self.fpn_convs = []
|
||
|
fan = out_channels * 3 * 3
|
||
|
|
||
|
# stage index 0,1,2,3 stands for res2,res3,res4,res5 on ResNet Backbone
|
||
|
# 0 <= st_stage < ed_stage <= 3
|
||
|
st_stage = 4 - len(in_channels)
|
||
|
ed_stage = st_stage + len(in_channels) - 1
|
||
|
for i in range(st_stage, ed_stage + 1):
|
||
|
if i == 3:
|
||
|
lateral_name = "fpn_inner_res5_sum"
|
||
|
else:
|
||
|
lateral_name = "fpn_inner_res{}_sum_lateral".format(i + 2)
|
||
|
in_c = in_channels[i - st_stage]
|
||
|
if self.norm_type is not None:
|
||
|
lateral = self.add_sublayer(
|
||
|
lateral_name,
|
||
|
ConvNormLayer(
|
||
|
ch_in=in_c,
|
||
|
ch_out=out_channels,
|
||
|
filter_size=1,
|
||
|
stride=1,
|
||
|
norm_type=self.norm_type,
|
||
|
norm_decay=self.norm_decay,
|
||
|
freeze_norm=self.freeze_norm,
|
||
|
initializer=XavierUniform(fan_out=in_c),
|
||
|
),
|
||
|
)
|
||
|
else:
|
||
|
lateral = self.add_sublayer(
|
||
|
lateral_name,
|
||
|
nn.Conv2D(
|
||
|
in_channels=in_c,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=1,
|
||
|
weight_attr=ParamAttr(initializer=XavierUniform(fan_out=in_c)),
|
||
|
),
|
||
|
)
|
||
|
self.lateral_convs.append(lateral)
|
||
|
|
||
|
for i in range(st_stage, ed_stage + 1):
|
||
|
fpn_name = "fpn_res{}_sum".format(i + 2)
|
||
|
if self.norm_type is not None:
|
||
|
fpn_conv = self.add_sublayer(
|
||
|
fpn_name,
|
||
|
ConvNormLayer(
|
||
|
ch_in=out_channels,
|
||
|
ch_out=out_channels,
|
||
|
filter_size=3,
|
||
|
stride=1,
|
||
|
norm_type=self.norm_type,
|
||
|
norm_decay=self.norm_decay,
|
||
|
freeze_norm=self.freeze_norm,
|
||
|
initializer=XavierUniform(fan_out=fan),
|
||
|
),
|
||
|
)
|
||
|
else:
|
||
|
fpn_conv = self.add_sublayer(
|
||
|
fpn_name,
|
||
|
nn.Conv2D(
|
||
|
in_channels=out_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=3,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(initializer=XavierUniform(fan_out=fan)),
|
||
|
),
|
||
|
)
|
||
|
self.fpn_convs.append(fpn_conv)
|
||
|
|
||
|
# add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
|
||
|
if self.has_extra_convs:
|
||
|
for i in range(self.extra_stage):
|
||
|
lvl = ed_stage + 1 + i
|
||
|
if i == 0 and self.use_c5:
|
||
|
in_c = in_channels[-1]
|
||
|
else:
|
||
|
in_c = out_channels
|
||
|
extra_fpn_name = "fpn_{}".format(lvl + 2)
|
||
|
if self.norm_type is not None:
|
||
|
extra_fpn_conv = self.add_sublayer(
|
||
|
extra_fpn_name,
|
||
|
ConvNormLayer(
|
||
|
ch_in=in_c,
|
||
|
ch_out=out_channels,
|
||
|
filter_size=3,
|
||
|
stride=2,
|
||
|
norm_type=self.norm_type,
|
||
|
norm_decay=self.norm_decay,
|
||
|
freeze_norm=self.freeze_norm,
|
||
|
initializer=XavierUniform(fan_out=fan),
|
||
|
),
|
||
|
)
|
||
|
else:
|
||
|
extra_fpn_conv = self.add_sublayer(
|
||
|
extra_fpn_name,
|
||
|
nn.Conv2D(
|
||
|
in_channels=in_c,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding=1,
|
||
|
weight_attr=ParamAttr(
|
||
|
initializer=XavierUniform(fan_out=fan)
|
||
|
),
|
||
|
),
|
||
|
)
|
||
|
self.fpn_convs.append(extra_fpn_conv)
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, input_shape):
|
||
|
return {
|
||
|
"in_channels": [i.channels for i in input_shape],
|
||
|
"spatial_scales": [1.0 / i.stride for i in input_shape],
|
||
|
}
|
||
|
|
||
|
def forward(self, body_feats):
|
||
|
laterals = []
|
||
|
num_levels = len(body_feats)
|
||
|
|
||
|
for i in range(num_levels):
|
||
|
laterals.append(self.lateral_convs[i](body_feats[i]))
|
||
|
|
||
|
for i in range(1, num_levels):
|
||
|
lvl = num_levels - i
|
||
|
upsample = F.interpolate(
|
||
|
laterals[lvl],
|
||
|
scale_factor=2.0,
|
||
|
mode="nearest",
|
||
|
)
|
||
|
laterals[lvl - 1] += upsample
|
||
|
|
||
|
fpn_output = []
|
||
|
for lvl in range(num_levels):
|
||
|
fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))
|
||
|
|
||
|
if self.extra_stage > 0:
|
||
|
# use max pool to get more levels on top of outputs (Faster R-CNN, Mask R-CNN)
|
||
|
if not self.has_extra_convs:
|
||
|
assert (
|
||
|
self.extra_stage == 1
|
||
|
), "extra_stage should be 1 if FPN has not extra convs"
|
||
|
fpn_output.append(F.max_pool2d(fpn_output[-1], 1, stride=2))
|
||
|
# add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
|
||
|
else:
|
||
|
if self.use_c5:
|
||
|
extra_source = body_feats[-1]
|
||
|
else:
|
||
|
extra_source = fpn_output[-1]
|
||
|
fpn_output.append(self.fpn_convs[num_levels](extra_source))
|
||
|
|
||
|
for i in range(1, self.extra_stage):
|
||
|
if self.relu_before_extra_convs:
|
||
|
fpn_output.append(
|
||
|
self.fpn_convs[num_levels + i](F.relu(fpn_output[-1]))
|
||
|
)
|
||
|
else:
|
||
|
fpn_output.append(
|
||
|
self.fpn_convs[num_levels + i](fpn_output[-1])
|
||
|
)
|
||
|
return fpn_output
|