You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
118 lines
4.2 KiB
Python
118 lines
4.2 KiB
Python
8 months ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle import nn
|
||
|
from ppocr.modeling.transforms import build_transform
|
||
|
from ppocr.modeling.backbones import build_backbone
|
||
|
from ppocr.modeling.necks import build_neck
|
||
|
from ppocr.modeling.heads import build_head
|
||
|
|
||
|
__all__ = ["BaseModel"]
|
||
|
|
||
|
|
||
|
class BaseModel(nn.Layer):
|
||
|
def __init__(self, config):
|
||
|
"""
|
||
|
the module for OCR.
|
||
|
args:
|
||
|
config (dict): the super parameters for module.
|
||
|
"""
|
||
|
super(BaseModel, self).__init__()
|
||
|
in_channels = config.get("in_channels", 3)
|
||
|
model_type = config["model_type"]
|
||
|
# build transfrom,
|
||
|
# for rec, transfrom can be TPS,None
|
||
|
# for det and cls, transfrom shoule to be None,
|
||
|
# if you make model differently, you can use transfrom in det and cls
|
||
|
if "Transform" not in config or config["Transform"] is None:
|
||
|
self.use_transform = False
|
||
|
else:
|
||
|
self.use_transform = True
|
||
|
config["Transform"]["in_channels"] = in_channels
|
||
|
self.transform = build_transform(config["Transform"])
|
||
|
in_channels = self.transform.out_channels
|
||
|
|
||
|
# build backbone, backbone is need for del, rec and cls
|
||
|
if "Backbone" not in config or config["Backbone"] is None:
|
||
|
self.use_backbone = False
|
||
|
else:
|
||
|
self.use_backbone = True
|
||
|
config["Backbone"]["in_channels"] = in_channels
|
||
|
self.backbone = build_backbone(config["Backbone"], model_type)
|
||
|
in_channels = self.backbone.out_channels
|
||
|
|
||
|
# build neck
|
||
|
# for rec, neck can be cnn,rnn or reshape(None)
|
||
|
# for det, neck can be FPN, BIFPN and so on.
|
||
|
# for cls, neck should be none
|
||
|
if "Neck" not in config or config["Neck"] is None:
|
||
|
self.use_neck = False
|
||
|
else:
|
||
|
self.use_neck = True
|
||
|
config["Neck"]["in_channels"] = in_channels
|
||
|
self.neck = build_neck(config["Neck"])
|
||
|
in_channels = self.neck.out_channels
|
||
|
|
||
|
# # build head, head is need for det, rec and cls
|
||
|
if "Head" not in config or config["Head"] is None:
|
||
|
self.use_head = False
|
||
|
else:
|
||
|
self.use_head = True
|
||
|
config["Head"]["in_channels"] = in_channels
|
||
|
self.head = build_head(config["Head"])
|
||
|
|
||
|
self.return_all_feats = config.get("return_all_feats", False)
|
||
|
|
||
|
def forward(self, x, data=None):
|
||
|
y = dict()
|
||
|
if self.use_transform:
|
||
|
x = self.transform(x)
|
||
|
if self.use_backbone:
|
||
|
x = self.backbone(x)
|
||
|
if isinstance(x, dict):
|
||
|
y.update(x)
|
||
|
else:
|
||
|
y["backbone_out"] = x
|
||
|
final_name = "backbone_out"
|
||
|
if self.use_neck:
|
||
|
x = self.neck(x)
|
||
|
if isinstance(x, dict):
|
||
|
y.update(x)
|
||
|
else:
|
||
|
y["neck_out"] = x
|
||
|
final_name = "neck_out"
|
||
|
if self.use_head:
|
||
|
x = self.head(x, targets=data)
|
||
|
# for multi head, save ctc neck out for udml
|
||
|
if isinstance(x, dict) and "ctc_neck" in x.keys():
|
||
|
y["neck_out"] = x["ctc_neck"]
|
||
|
y["head_out"] = x
|
||
|
elif isinstance(x, dict):
|
||
|
y.update(x)
|
||
|
else:
|
||
|
y["head_out"] = x
|
||
|
final_name = "head_out"
|
||
|
if self.return_all_feats:
|
||
|
if self.training:
|
||
|
return y
|
||
|
elif isinstance(x, dict):
|
||
|
return x
|
||
|
else:
|
||
|
return {final_name: x}
|
||
|
else:
|
||
|
return x
|