You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
698 lines
26 KiB
Python
698 lines
26 KiB
Python
8 months ago
|
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
This code is refer from:
|
||
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/fcenet_targets.py
|
||
|
"""
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
from numpy.fft import fft
|
||
|
from numpy.linalg import norm
|
||
|
import sys
|
||
|
|
||
|
|
||
|
def vector_slope(vec):
|
||
|
assert len(vec) == 2
|
||
|
return abs(vec[1] / (vec[0] + 1e-8))
|
||
|
|
||
|
|
||
|
class FCENetTargets:
|
||
|
"""Generate the ground truth targets of FCENet: Fourier Contour Embedding
|
||
|
for Arbitrary-Shaped Text Detection.
|
||
|
|
||
|
[https://arxiv.org/abs/2104.10442]
|
||
|
|
||
|
Args:
|
||
|
fourier_degree (int): The maximum Fourier transform degree k.
|
||
|
resample_step (float): The step size for resampling the text center
|
||
|
line (TCL). It's better not to exceed half of the minimum width.
|
||
|
center_region_shrink_ratio (float): The shrink ratio of text center
|
||
|
region.
|
||
|
level_size_divisors (tuple(int)): The downsample ratio on each level.
|
||
|
level_proportion_range (tuple(tuple(int))): The range of text sizes
|
||
|
assigned to each level.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
fourier_degree=5,
|
||
|
resample_step=4.0,
|
||
|
center_region_shrink_ratio=0.3,
|
||
|
level_size_divisors=(8, 16, 32),
|
||
|
level_proportion_range=((0, 0.25), (0.2, 0.65), (0.55, 1.0)),
|
||
|
orientation_thr=2.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__()
|
||
|
assert isinstance(level_size_divisors, tuple)
|
||
|
assert isinstance(level_proportion_range, tuple)
|
||
|
assert len(level_size_divisors) == len(level_proportion_range)
|
||
|
self.fourier_degree = fourier_degree
|
||
|
self.resample_step = resample_step
|
||
|
self.center_region_shrink_ratio = center_region_shrink_ratio
|
||
|
self.level_size_divisors = level_size_divisors
|
||
|
self.level_proportion_range = level_proportion_range
|
||
|
|
||
|
self.orientation_thr = orientation_thr
|
||
|
|
||
|
def vector_angle(self, vec1, vec2):
|
||
|
if vec1.ndim > 1:
|
||
|
unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8).reshape((-1, 1))
|
||
|
else:
|
||
|
unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8)
|
||
|
if vec2.ndim > 1:
|
||
|
unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8).reshape((-1, 1))
|
||
|
else:
|
||
|
unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8)
|
||
|
return np.arccos(np.clip(np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0))
|
||
|
|
||
|
def resample_line(self, line, n):
|
||
|
"""Resample n points on a line.
|
||
|
|
||
|
Args:
|
||
|
line (ndarray): The points composing a line.
|
||
|
n (int): The resampled points number.
|
||
|
|
||
|
Returns:
|
||
|
resampled_line (ndarray): The points composing the resampled line.
|
||
|
"""
|
||
|
|
||
|
assert line.ndim == 2
|
||
|
assert line.shape[0] >= 2
|
||
|
assert line.shape[1] == 2
|
||
|
assert isinstance(n, int)
|
||
|
assert n > 0
|
||
|
|
||
|
length_list = [norm(line[i + 1] - line[i]) for i in range(len(line) - 1)]
|
||
|
total_length = sum(length_list)
|
||
|
length_cumsum = np.cumsum([0.0] + length_list)
|
||
|
delta_length = total_length / (float(n) + 1e-8)
|
||
|
|
||
|
current_edge_ind = 0
|
||
|
resampled_line = [line[0]]
|
||
|
|
||
|
for i in range(1, n):
|
||
|
current_line_len = i * delta_length
|
||
|
|
||
|
while (
|
||
|
current_edge_ind + 1 < len(length_cumsum)
|
||
|
and current_line_len >= length_cumsum[current_edge_ind + 1]
|
||
|
):
|
||
|
current_edge_ind += 1
|
||
|
|
||
|
current_edge_end_shift = current_line_len - length_cumsum[current_edge_ind]
|
||
|
|
||
|
if current_edge_ind >= len(length_list):
|
||
|
break
|
||
|
end_shift_ratio = current_edge_end_shift / length_list[current_edge_ind]
|
||
|
current_point = (
|
||
|
line[current_edge_ind]
|
||
|
+ (line[current_edge_ind + 1] - line[current_edge_ind])
|
||
|
* end_shift_ratio
|
||
|
)
|
||
|
resampled_line.append(current_point)
|
||
|
resampled_line.append(line[-1])
|
||
|
resampled_line = np.array(resampled_line)
|
||
|
|
||
|
return resampled_line
|
||
|
|
||
|
def reorder_poly_edge(self, points):
|
||
|
"""Get the respective points composing head edge, tail edge, top
|
||
|
sideline and bottom sideline.
|
||
|
|
||
|
Args:
|
||
|
points (ndarray): The points composing a text polygon.
|
||
|
|
||
|
Returns:
|
||
|
head_edge (ndarray): The two points composing the head edge of text
|
||
|
polygon.
|
||
|
tail_edge (ndarray): The two points composing the tail edge of text
|
||
|
polygon.
|
||
|
top_sideline (ndarray): The points composing top curved sideline of
|
||
|
text polygon.
|
||
|
bot_sideline (ndarray): The points composing bottom curved sideline
|
||
|
of text polygon.
|
||
|
"""
|
||
|
|
||
|
assert points.ndim == 2
|
||
|
assert points.shape[0] >= 4
|
||
|
assert points.shape[1] == 2
|
||
|
|
||
|
head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr)
|
||
|
head_edge, tail_edge = points[head_inds], points[tail_inds]
|
||
|
|
||
|
pad_points = np.vstack([points, points])
|
||
|
if tail_inds[1] < 1:
|
||
|
tail_inds[1] = len(points)
|
||
|
sideline1 = pad_points[head_inds[1] : tail_inds[1]]
|
||
|
sideline2 = pad_points[tail_inds[1] : (head_inds[1] + len(points))]
|
||
|
sideline_mean_shift = np.mean(sideline1, axis=0) - np.mean(sideline2, axis=0)
|
||
|
|
||
|
if sideline_mean_shift[1] > 0:
|
||
|
top_sideline, bot_sideline = sideline2, sideline1
|
||
|
else:
|
||
|
top_sideline, bot_sideline = sideline1, sideline2
|
||
|
|
||
|
return head_edge, tail_edge, top_sideline, bot_sideline
|
||
|
|
||
|
def find_head_tail(self, points, orientation_thr):
|
||
|
"""Find the head edge and tail edge of a text polygon.
|
||
|
|
||
|
Args:
|
||
|
points (ndarray): The points composing a text polygon.
|
||
|
orientation_thr (float): The threshold for distinguishing between
|
||
|
head edge and tail edge among the horizontal and vertical edges
|
||
|
of a quadrangle.
|
||
|
|
||
|
Returns:
|
||
|
head_inds (list): The indexes of two points composing head edge.
|
||
|
tail_inds (list): The indexes of two points composing tail edge.
|
||
|
"""
|
||
|
|
||
|
assert points.ndim == 2
|
||
|
assert points.shape[0] >= 4
|
||
|
assert points.shape[1] == 2
|
||
|
assert isinstance(orientation_thr, float)
|
||
|
|
||
|
if len(points) > 4:
|
||
|
pad_points = np.vstack([points, points[0]])
|
||
|
edge_vec = pad_points[1:] - pad_points[:-1]
|
||
|
|
||
|
theta_sum = []
|
||
|
adjacent_vec_theta = []
|
||
|
for i, edge_vec1 in enumerate(edge_vec):
|
||
|
adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]]
|
||
|
adjacent_edge_vec = edge_vec[adjacent_ind]
|
||
|
temp_theta_sum = np.sum(self.vector_angle(edge_vec1, adjacent_edge_vec))
|
||
|
temp_adjacent_theta = self.vector_angle(
|
||
|
adjacent_edge_vec[0], adjacent_edge_vec[1]
|
||
|
)
|
||
|
theta_sum.append(temp_theta_sum)
|
||
|
adjacent_vec_theta.append(temp_adjacent_theta)
|
||
|
theta_sum_score = np.array(theta_sum) / np.pi
|
||
|
adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi
|
||
|
poly_center = np.mean(points, axis=0)
|
||
|
edge_dist = np.maximum(
|
||
|
norm(pad_points[1:] - poly_center, axis=-1),
|
||
|
norm(pad_points[:-1] - poly_center, axis=-1),
|
||
|
)
|
||
|
dist_score = edge_dist / np.max(edge_dist)
|
||
|
position_score = np.zeros(len(edge_vec))
|
||
|
score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score
|
||
|
score += 0.35 * dist_score
|
||
|
if len(points) % 2 == 0:
|
||
|
position_score[(len(score) // 2 - 1)] += 1
|
||
|
position_score[-1] += 1
|
||
|
score += 0.1 * position_score
|
||
|
pad_score = np.concatenate([score, score])
|
||
|
score_matrix = np.zeros((len(score), len(score) - 3))
|
||
|
x = np.arange(len(score) - 3) / float(len(score) - 4)
|
||
|
gaussian = (
|
||
|
1.0
|
||
|
/ (np.sqrt(2.0 * np.pi) * 0.5)
|
||
|
* np.exp(-np.power((x - 0.5) / 0.5, 2.0) / 2)
|
||
|
)
|
||
|
gaussian = gaussian / np.max(gaussian)
|
||
|
for i in range(len(score)):
|
||
|
score_matrix[i, :] = (
|
||
|
score[i]
|
||
|
+ pad_score[(i + 2) : (i + len(score) - 1)] * gaussian * 0.3
|
||
|
)
|
||
|
|
||
|
head_start, tail_increment = np.unravel_index(
|
||
|
score_matrix.argmax(), score_matrix.shape
|
||
|
)
|
||
|
tail_start = (head_start + tail_increment + 2) % len(points)
|
||
|
head_end = (head_start + 1) % len(points)
|
||
|
tail_end = (tail_start + 1) % len(points)
|
||
|
|
||
|
if head_end > tail_end:
|
||
|
head_start, tail_start = tail_start, head_start
|
||
|
head_end, tail_end = tail_end, head_end
|
||
|
head_inds = [head_start, head_end]
|
||
|
tail_inds = [tail_start, tail_end]
|
||
|
else:
|
||
|
if vector_slope(points[1] - points[0]) + vector_slope(
|
||
|
points[3] - points[2]
|
||
|
) < vector_slope(points[2] - points[1]) + vector_slope(
|
||
|
points[0] - points[3]
|
||
|
):
|
||
|
horizontal_edge_inds = [[0, 1], [2, 3]]
|
||
|
vertical_edge_inds = [[3, 0], [1, 2]]
|
||
|
else:
|
||
|
horizontal_edge_inds = [[3, 0], [1, 2]]
|
||
|
vertical_edge_inds = [[0, 1], [2, 3]]
|
||
|
|
||
|
vertical_len_sum = norm(
|
||
|
points[vertical_edge_inds[0][0]] - points[vertical_edge_inds[0][1]]
|
||
|
) + norm(
|
||
|
points[vertical_edge_inds[1][0]] - points[vertical_edge_inds[1][1]]
|
||
|
)
|
||
|
horizontal_len_sum = norm(
|
||
|
points[horizontal_edge_inds[0][0]] - points[horizontal_edge_inds[0][1]]
|
||
|
) + norm(
|
||
|
points[horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1][1]]
|
||
|
)
|
||
|
|
||
|
if vertical_len_sum > horizontal_len_sum * orientation_thr:
|
||
|
head_inds = horizontal_edge_inds[0]
|
||
|
tail_inds = horizontal_edge_inds[1]
|
||
|
else:
|
||
|
head_inds = vertical_edge_inds[0]
|
||
|
tail_inds = vertical_edge_inds[1]
|
||
|
|
||
|
return head_inds, tail_inds
|
||
|
|
||
|
def resample_sidelines(self, sideline1, sideline2, resample_step):
|
||
|
"""Resample two sidelines to be of the same points number according to
|
||
|
step size.
|
||
|
|
||
|
Args:
|
||
|
sideline1 (ndarray): The points composing a sideline of a text
|
||
|
polygon.
|
||
|
sideline2 (ndarray): The points composing another sideline of a
|
||
|
text polygon.
|
||
|
resample_step (float): The resampled step size.
|
||
|
|
||
|
Returns:
|
||
|
resampled_line1 (ndarray): The resampled line 1.
|
||
|
resampled_line2 (ndarray): The resampled line 2.
|
||
|
"""
|
||
|
|
||
|
assert sideline1.ndim == sideline2.ndim == 2
|
||
|
assert sideline1.shape[1] == sideline2.shape[1] == 2
|
||
|
assert sideline1.shape[0] >= 2
|
||
|
assert sideline2.shape[0] >= 2
|
||
|
assert isinstance(resample_step, float)
|
||
|
|
||
|
length1 = sum(
|
||
|
[norm(sideline1[i + 1] - sideline1[i]) for i in range(len(sideline1) - 1)]
|
||
|
)
|
||
|
length2 = sum(
|
||
|
[norm(sideline2[i + 1] - sideline2[i]) for i in range(len(sideline2) - 1)]
|
||
|
)
|
||
|
|
||
|
total_length = (length1 + length2) / 2
|
||
|
resample_point_num = max(int(float(total_length) / resample_step), 1)
|
||
|
|
||
|
resampled_line1 = self.resample_line(sideline1, resample_point_num)
|
||
|
resampled_line2 = self.resample_line(sideline2, resample_point_num)
|
||
|
|
||
|
return resampled_line1, resampled_line2
|
||
|
|
||
|
def generate_center_region_mask(self, img_size, text_polys):
|
||
|
"""Generate text center region mask.
|
||
|
|
||
|
Args:
|
||
|
img_size (tuple): The image size of (height, width).
|
||
|
text_polys (list[list[ndarray]]): The list of text polygons.
|
||
|
|
||
|
Returns:
|
||
|
center_region_mask (ndarray): The text center region mask.
|
||
|
"""
|
||
|
|
||
|
assert isinstance(img_size, tuple)
|
||
|
# assert check_argument.is_2dlist(text_polys)
|
||
|
|
||
|
h, w = img_size
|
||
|
|
||
|
center_region_mask = np.zeros((h, w), np.uint8)
|
||
|
|
||
|
center_region_boxes = []
|
||
|
for poly in text_polys:
|
||
|
# assert len(poly) == 1
|
||
|
polygon_points = poly.reshape(-1, 2)
|
||
|
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
|
||
|
resampled_top_line, resampled_bot_line = self.resample_sidelines(
|
||
|
top_line, bot_line, self.resample_step
|
||
|
)
|
||
|
resampled_bot_line = resampled_bot_line[::-1]
|
||
|
if len(resampled_top_line) != len(resampled_bot_line):
|
||
|
continue
|
||
|
center_line = (resampled_top_line + resampled_bot_line) / 2
|
||
|
|
||
|
line_head_shrink_len = (
|
||
|
norm(resampled_top_line[0] - resampled_bot_line[0]) / 4.0
|
||
|
)
|
||
|
line_tail_shrink_len = (
|
||
|
norm(resampled_top_line[-1] - resampled_bot_line[-1]) / 4.0
|
||
|
)
|
||
|
head_shrink_num = int(line_head_shrink_len // self.resample_step)
|
||
|
tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
|
||
|
if len(center_line) > head_shrink_num + tail_shrink_num + 2:
|
||
|
center_line = center_line[
|
||
|
head_shrink_num : len(center_line) - tail_shrink_num
|
||
|
]
|
||
|
resampled_top_line = resampled_top_line[
|
||
|
head_shrink_num : len(resampled_top_line) - tail_shrink_num
|
||
|
]
|
||
|
resampled_bot_line = resampled_bot_line[
|
||
|
head_shrink_num : len(resampled_bot_line) - tail_shrink_num
|
||
|
]
|
||
|
|
||
|
for i in range(0, len(center_line) - 1):
|
||
|
tl = (
|
||
|
center_line[i]
|
||
|
+ (resampled_top_line[i] - center_line[i])
|
||
|
* self.center_region_shrink_ratio
|
||
|
)
|
||
|
tr = (
|
||
|
center_line[i + 1]
|
||
|
+ (resampled_top_line[i + 1] - center_line[i + 1])
|
||
|
* self.center_region_shrink_ratio
|
||
|
)
|
||
|
br = (
|
||
|
center_line[i + 1]
|
||
|
+ (resampled_bot_line[i + 1] - center_line[i + 1])
|
||
|
* self.center_region_shrink_ratio
|
||
|
)
|
||
|
bl = (
|
||
|
center_line[i]
|
||
|
+ (resampled_bot_line[i] - center_line[i])
|
||
|
* self.center_region_shrink_ratio
|
||
|
)
|
||
|
current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32)
|
||
|
center_region_boxes.append(current_center_box)
|
||
|
|
||
|
cv2.fillPoly(center_region_mask, center_region_boxes, 1)
|
||
|
return center_region_mask
|
||
|
|
||
|
def resample_polygon(self, polygon, n=400):
|
||
|
"""Resample one polygon with n points on its boundary.
|
||
|
|
||
|
Args:
|
||
|
polygon (list[float]): The input polygon.
|
||
|
n (int): The number of resampled points.
|
||
|
Returns:
|
||
|
resampled_polygon (list[float]): The resampled polygon.
|
||
|
"""
|
||
|
length = []
|
||
|
|
||
|
for i in range(len(polygon)):
|
||
|
p1 = polygon[i]
|
||
|
if i == len(polygon) - 1:
|
||
|
p2 = polygon[0]
|
||
|
else:
|
||
|
p2 = polygon[i + 1]
|
||
|
length.append(((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5)
|
||
|
|
||
|
total_length = sum(length)
|
||
|
n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n
|
||
|
n_on_each_line = n_on_each_line.astype(np.int32)
|
||
|
new_polygon = []
|
||
|
|
||
|
for i in range(len(polygon)):
|
||
|
num = n_on_each_line[i]
|
||
|
p1 = polygon[i]
|
||
|
if i == len(polygon) - 1:
|
||
|
p2 = polygon[0]
|
||
|
else:
|
||
|
p2 = polygon[i + 1]
|
||
|
|
||
|
if num == 0:
|
||
|
continue
|
||
|
|
||
|
dxdy = (p2 - p1) / num
|
||
|
for j in range(num):
|
||
|
point = p1 + dxdy * j
|
||
|
new_polygon.append(point)
|
||
|
|
||
|
return np.array(new_polygon)
|
||
|
|
||
|
def normalize_polygon(self, polygon):
|
||
|
"""Normalize one polygon so that its start point is at right most.
|
||
|
|
||
|
Args:
|
||
|
polygon (list[float]): The origin polygon.
|
||
|
Returns:
|
||
|
new_polygon (lost[float]): The polygon with start point at right.
|
||
|
"""
|
||
|
temp_polygon = polygon - polygon.mean(axis=0)
|
||
|
x = np.abs(temp_polygon[:, 0])
|
||
|
y = temp_polygon[:, 1]
|
||
|
index_x = np.argsort(x)
|
||
|
index_y = np.argmin(y[index_x[:8]])
|
||
|
index = index_x[index_y]
|
||
|
new_polygon = np.concatenate([polygon[index:], polygon[:index]])
|
||
|
return new_polygon
|
||
|
|
||
|
def poly2fourier(self, polygon, fourier_degree):
|
||
|
"""Perform Fourier transformation to generate Fourier coefficients ck
|
||
|
from polygon.
|
||
|
|
||
|
Args:
|
||
|
polygon (ndarray): An input polygon.
|
||
|
fourier_degree (int): The maximum Fourier degree K.
|
||
|
Returns:
|
||
|
c (ndarray(complex)): Fourier coefficients.
|
||
|
"""
|
||
|
points = polygon[:, 0] + polygon[:, 1] * 1j
|
||
|
c_fft = fft(points) / len(points)
|
||
|
c = np.hstack((c_fft[-fourier_degree:], c_fft[: fourier_degree + 1]))
|
||
|
return c
|
||
|
|
||
|
def clockwise(self, c, fourier_degree):
|
||
|
"""Make sure the polygon reconstructed from Fourier coefficients c in
|
||
|
the clockwise direction.
|
||
|
|
||
|
Args:
|
||
|
polygon (list[float]): The origin polygon.
|
||
|
Returns:
|
||
|
new_polygon (lost[float]): The polygon in clockwise point order.
|
||
|
"""
|
||
|
if np.abs(c[fourier_degree + 1]) > np.abs(c[fourier_degree - 1]):
|
||
|
return c
|
||
|
elif np.abs(c[fourier_degree + 1]) < np.abs(c[fourier_degree - 1]):
|
||
|
return c[::-1]
|
||
|
else:
|
||
|
if np.abs(c[fourier_degree + 2]) > np.abs(c[fourier_degree - 2]):
|
||
|
return c
|
||
|
else:
|
||
|
return c[::-1]
|
||
|
|
||
|
def cal_fourier_signature(self, polygon, fourier_degree):
|
||
|
"""Calculate Fourier signature from input polygon.
|
||
|
|
||
|
Args:
|
||
|
polygon (ndarray): The input polygon.
|
||
|
fourier_degree (int): The maximum Fourier degree K.
|
||
|
Returns:
|
||
|
fourier_signature (ndarray): An array shaped (2k+1, 2) containing
|
||
|
real part and image part of 2k+1 Fourier coefficients.
|
||
|
"""
|
||
|
resampled_polygon = self.resample_polygon(polygon)
|
||
|
resampled_polygon = self.normalize_polygon(resampled_polygon)
|
||
|
|
||
|
fourier_coeff = self.poly2fourier(resampled_polygon, fourier_degree)
|
||
|
fourier_coeff = self.clockwise(fourier_coeff, fourier_degree)
|
||
|
|
||
|
real_part = np.real(fourier_coeff).reshape((-1, 1))
|
||
|
image_part = np.imag(fourier_coeff).reshape((-1, 1))
|
||
|
fourier_signature = np.hstack([real_part, image_part])
|
||
|
|
||
|
return fourier_signature
|
||
|
|
||
|
def generate_fourier_maps(self, img_size, text_polys):
|
||
|
"""Generate Fourier coefficient maps.
|
||
|
|
||
|
Args:
|
||
|
img_size (tuple): The image size of (height, width).
|
||
|
text_polys (list[list[ndarray]]): The list of text polygons.
|
||
|
|
||
|
Returns:
|
||
|
fourier_real_map (ndarray): The Fourier coefficient real part maps.
|
||
|
fourier_image_map (ndarray): The Fourier coefficient image part
|
||
|
maps.
|
||
|
"""
|
||
|
|
||
|
assert isinstance(img_size, tuple)
|
||
|
|
||
|
h, w = img_size
|
||
|
k = self.fourier_degree
|
||
|
real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
|
||
|
imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
|
||
|
|
||
|
for poly in text_polys:
|
||
|
mask = np.zeros((h, w), dtype=np.uint8)
|
||
|
polygon = np.array(poly).reshape((1, -1, 2))
|
||
|
cv2.fillPoly(mask, polygon.astype(np.int32), 1)
|
||
|
fourier_coeff = self.cal_fourier_signature(polygon[0], k)
|
||
|
for i in range(-k, k + 1):
|
||
|
if i != 0:
|
||
|
real_map[i + k, :, :] = (
|
||
|
mask * fourier_coeff[i + k, 0]
|
||
|
+ (1 - mask) * real_map[i + k, :, :]
|
||
|
)
|
||
|
imag_map[i + k, :, :] = (
|
||
|
mask * fourier_coeff[i + k, 1]
|
||
|
+ (1 - mask) * imag_map[i + k, :, :]
|
||
|
)
|
||
|
else:
|
||
|
yx = np.argwhere(mask > 0.5)
|
||
|
k_ind = np.ones((len(yx)), dtype=np.int64) * k
|
||
|
y, x = yx[:, 0], yx[:, 1]
|
||
|
real_map[k_ind, y, x] = fourier_coeff[k, 0] - x
|
||
|
imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y
|
||
|
|
||
|
return real_map, imag_map
|
||
|
|
||
|
def generate_text_region_mask(self, img_size, text_polys):
|
||
|
"""Generate text center region mask and geometry attribute maps.
|
||
|
|
||
|
Args:
|
||
|
img_size (tuple): The image size (height, width).
|
||
|
text_polys (list[list[ndarray]]): The list of text polygons.
|
||
|
|
||
|
Returns:
|
||
|
text_region_mask (ndarray): The text region mask.
|
||
|
"""
|
||
|
|
||
|
assert isinstance(img_size, tuple)
|
||
|
|
||
|
h, w = img_size
|
||
|
text_region_mask = np.zeros((h, w), dtype=np.uint8)
|
||
|
|
||
|
for poly in text_polys:
|
||
|
polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2))
|
||
|
cv2.fillPoly(text_region_mask, polygon, 1)
|
||
|
|
||
|
return text_region_mask
|
||
|
|
||
|
def generate_effective_mask(self, mask_size: tuple, polygons_ignore):
|
||
|
"""Generate effective mask by setting the ineffective regions to 0 and
|
||
|
effective regions to 1.
|
||
|
|
||
|
Args:
|
||
|
mask_size (tuple): The mask size.
|
||
|
polygons_ignore (list[[ndarray]]: The list of ignored text
|
||
|
polygons.
|
||
|
|
||
|
Returns:
|
||
|
mask (ndarray): The effective mask of (height, width).
|
||
|
"""
|
||
|
|
||
|
mask = np.ones(mask_size, dtype=np.uint8)
|
||
|
|
||
|
for poly in polygons_ignore:
|
||
|
instance = poly.reshape(-1, 2).astype(np.int32).reshape(1, -1, 2)
|
||
|
cv2.fillPoly(mask, instance, 0)
|
||
|
|
||
|
return mask
|
||
|
|
||
|
def generate_level_targets(self, img_size, text_polys, ignore_polys):
|
||
|
"""Generate ground truth target on each level.
|
||
|
|
||
|
Args:
|
||
|
img_size (list[int]): Shape of input image.
|
||
|
text_polys (list[list[ndarray]]): A list of ground truth polygons.
|
||
|
ignore_polys (list[list[ndarray]]): A list of ignored polygons.
|
||
|
Returns:
|
||
|
level_maps (list(ndarray)): A list of ground target on each level.
|
||
|
"""
|
||
|
h, w = img_size
|
||
|
lv_size_divs = self.level_size_divisors
|
||
|
lv_proportion_range = self.level_proportion_range
|
||
|
lv_text_polys = [[] for i in range(len(lv_size_divs))]
|
||
|
lv_ignore_polys = [[] for i in range(len(lv_size_divs))]
|
||
|
level_maps = []
|
||
|
for poly in text_polys:
|
||
|
polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2))
|
||
|
_, _, box_w, box_h = cv2.boundingRect(polygon)
|
||
|
proportion = max(box_h, box_w) / (h + 1e-8)
|
||
|
|
||
|
for ind, proportion_range in enumerate(lv_proportion_range):
|
||
|
if proportion_range[0] < proportion < proportion_range[1]:
|
||
|
lv_text_polys[ind].append(poly / lv_size_divs[ind])
|
||
|
|
||
|
for ignore_poly in ignore_polys:
|
||
|
polygon = np.array(ignore_poly, dtype=np.int32).reshape((1, -1, 2))
|
||
|
_, _, box_w, box_h = cv2.boundingRect(polygon)
|
||
|
proportion = max(box_h, box_w) / (h + 1e-8)
|
||
|
|
||
|
for ind, proportion_range in enumerate(lv_proportion_range):
|
||
|
if proportion_range[0] < proportion < proportion_range[1]:
|
||
|
lv_ignore_polys[ind].append(ignore_poly / lv_size_divs[ind])
|
||
|
|
||
|
for ind, size_divisor in enumerate(lv_size_divs):
|
||
|
current_level_maps = []
|
||
|
level_img_size = (h // size_divisor, w // size_divisor)
|
||
|
|
||
|
text_region = self.generate_text_region_mask(
|
||
|
level_img_size, lv_text_polys[ind]
|
||
|
)[None]
|
||
|
current_level_maps.append(text_region)
|
||
|
|
||
|
center_region = self.generate_center_region_mask(
|
||
|
level_img_size, lv_text_polys[ind]
|
||
|
)[None]
|
||
|
current_level_maps.append(center_region)
|
||
|
|
||
|
effective_mask = self.generate_effective_mask(
|
||
|
level_img_size, lv_ignore_polys[ind]
|
||
|
)[None]
|
||
|
current_level_maps.append(effective_mask)
|
||
|
|
||
|
fourier_real_map, fourier_image_maps = self.generate_fourier_maps(
|
||
|
level_img_size, lv_text_polys[ind]
|
||
|
)
|
||
|
current_level_maps.append(fourier_real_map)
|
||
|
current_level_maps.append(fourier_image_maps)
|
||
|
|
||
|
level_maps.append(np.concatenate(current_level_maps))
|
||
|
|
||
|
return level_maps
|
||
|
|
||
|
def generate_targets(self, results):
|
||
|
"""Generate the ground truth targets for FCENet.
|
||
|
|
||
|
Args:
|
||
|
results (dict): The input result dictionary.
|
||
|
|
||
|
Returns:
|
||
|
results (dict): The output result dictionary.
|
||
|
"""
|
||
|
|
||
|
assert isinstance(results, dict)
|
||
|
image = results["image"]
|
||
|
polygons = results["polys"]
|
||
|
ignore_tags = results["ignore_tags"]
|
||
|
h, w, _ = image.shape
|
||
|
|
||
|
polygon_masks = []
|
||
|
polygon_masks_ignore = []
|
||
|
for tag, polygon in zip(ignore_tags, polygons):
|
||
|
if tag is True:
|
||
|
polygon_masks_ignore.append(polygon)
|
||
|
else:
|
||
|
polygon_masks.append(polygon)
|
||
|
|
||
|
level_maps = self.generate_level_targets(
|
||
|
(h, w), polygon_masks, polygon_masks_ignore
|
||
|
)
|
||
|
|
||
|
mapping = {
|
||
|
"p3_maps": level_maps[0],
|
||
|
"p4_maps": level_maps[1],
|
||
|
"p5_maps": level_maps[2],
|
||
|
}
|
||
|
for key, value in mapping.items():
|
||
|
results[key] = value
|
||
|
|
||
|
return results
|
||
|
|
||
|
def __call__(self, results):
|
||
|
results = self.generate_targets(results)
|
||
|
return results
|