You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
4.7 KiB
Python
153 lines
4.7 KiB
Python
8 months ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
sys.path.insert(0, ".")
|
||
|
import copy
|
||
|
|
||
|
import time
|
||
|
import paddlehub
|
||
|
from paddlehub.common.logger import logger
|
||
|
from paddlehub.module.module import moduleinfo, runnable, serving
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import paddlehub as hub
|
||
|
|
||
|
from tools.infer.utility import base64_to_cv2
|
||
|
from ppstructure.kie.predict_kie_token_ser import SerPredictor
|
||
|
from ppstructure.utility import parse_args
|
||
|
|
||
|
from deploy.hubserving.kie_ser.params import read_params
|
||
|
|
||
|
|
||
|
@moduleinfo(
|
||
|
name="kie_ser",
|
||
|
version="1.0.0",
|
||
|
summary="kie ser service",
|
||
|
author="paddle-dev",
|
||
|
author_email="paddle-dev@baidu.com",
|
||
|
type="cv/KIE_SER",
|
||
|
)
|
||
|
class KIESer(hub.Module):
|
||
|
def _initialize(self, use_gpu=False, enable_mkldnn=False):
|
||
|
"""
|
||
|
initialize with the necessary elements
|
||
|
"""
|
||
|
cfg = self.merge_configs()
|
||
|
|
||
|
cfg.use_gpu = use_gpu
|
||
|
if use_gpu:
|
||
|
try:
|
||
|
_places = os.environ["CUDA_VISIBLE_DEVICES"]
|
||
|
int(_places[0])
|
||
|
print("use gpu: ", use_gpu)
|
||
|
print("CUDA_VISIBLE_DEVICES: ", _places)
|
||
|
cfg.gpu_mem = 8000
|
||
|
except:
|
||
|
raise RuntimeError(
|
||
|
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
|
||
|
)
|
||
|
cfg.ir_optim = True
|
||
|
cfg.enable_mkldnn = enable_mkldnn
|
||
|
|
||
|
self.ser_predictor = SerPredictor(cfg)
|
||
|
|
||
|
def merge_configs(
|
||
|
self,
|
||
|
):
|
||
|
# deafult cfg
|
||
|
backup_argv = copy.deepcopy(sys.argv)
|
||
|
sys.argv = sys.argv[:1]
|
||
|
cfg = parse_args()
|
||
|
|
||
|
update_cfg_map = vars(read_params())
|
||
|
|
||
|
for key in update_cfg_map:
|
||
|
cfg.__setattr__(key, update_cfg_map[key])
|
||
|
|
||
|
sys.argv = copy.deepcopy(backup_argv)
|
||
|
return cfg
|
||
|
|
||
|
def read_images(self, paths=[]):
|
||
|
images = []
|
||
|
for img_path in paths:
|
||
|
assert os.path.isfile(img_path), "The {} isn't a valid file.".format(
|
||
|
img_path
|
||
|
)
|
||
|
img = cv2.imread(img_path)
|
||
|
if img is None:
|
||
|
logger.info("error in loading image:{}".format(img_path))
|
||
|
continue
|
||
|
images.append(img)
|
||
|
return images
|
||
|
|
||
|
def predict(self, images=[], paths=[]):
|
||
|
"""
|
||
|
Get the chinese texts in the predicted images.
|
||
|
Args:
|
||
|
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
|
||
|
paths (list[str]): The paths of images. If paths not images
|
||
|
Returns:
|
||
|
res (list): The result of chinese texts and save path of images.
|
||
|
"""
|
||
|
if images != [] and isinstance(images, list) and paths == []:
|
||
|
predicted_data = images
|
||
|
elif images == [] and isinstance(paths, list) and paths != []:
|
||
|
predicted_data = self.read_images(paths)
|
||
|
else:
|
||
|
raise TypeError("The input data is inconsistent with expectations.")
|
||
|
|
||
|
assert (
|
||
|
predicted_data != []
|
||
|
), "There is not any image to be predicted. Please check the input data."
|
||
|
|
||
|
all_results = []
|
||
|
for img in predicted_data:
|
||
|
if img is None:
|
||
|
logger.info("error in loading image")
|
||
|
all_results.append([])
|
||
|
continue
|
||
|
starttime = time.time()
|
||
|
ser_res, _, elapse = self.ser_predictor(img)
|
||
|
elapse = time.time() - starttime
|
||
|
logger.info("Predict time: {}".format(elapse))
|
||
|
all_results.append(ser_res)
|
||
|
return all_results
|
||
|
|
||
|
@serving
|
||
|
def serving_method(self, images, **kwargs):
|
||
|
"""
|
||
|
Run as a service.
|
||
|
"""
|
||
|
images_decode = [base64_to_cv2(image) for image in images]
|
||
|
results = self.predict(images_decode, **kwargs)
|
||
|
return results
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
ocr = KIESer()
|
||
|
ocr._initialize()
|
||
|
image_path = [
|
||
|
"./doc/imgs/11.jpg",
|
||
|
"./doc/imgs/12.jpg",
|
||
|
]
|
||
|
res = ocr.predict(paths=image_path)
|
||
|
print(res)
|