You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

85 lines
2.5 KiB
Python

8 months ago
import fastdeploy as fd
from fastdeploy.serving.server import SimpleServer
import os
import logging
logging.getLogger().setLevel(logging.INFO)
# Configurations
det_model_dir = "ch_PP-OCRv3_det_infer"
cls_model_dir = "ch_ppocr_mobile_v2.0_cls_infer"
rec_model_dir = "ch_PP-OCRv3_rec_infer"
rec_label_file = "ppocr_keys_v1.txt"
device = "cpu"
# backend: ['paddle', 'trt'], you can also use other backends, but need to modify
# the runtime option below
backend = "paddle"
# Prepare models
# Detection model
det_model_file = os.path.join(det_model_dir, "inference.pdmodel")
det_params_file = os.path.join(det_model_dir, "inference.pdiparams")
# Classification model
cls_model_file = os.path.join(cls_model_dir, "inference.pdmodel")
cls_params_file = os.path.join(cls_model_dir, "inference.pdiparams")
# Recognition model
rec_model_file = os.path.join(rec_model_dir, "inference.pdmodel")
rec_params_file = os.path.join(rec_model_dir, "inference.pdiparams")
# Setup runtime option to select hardware, backend, etc.
option = fd.RuntimeOption()
if device.lower() == "gpu":
option.use_gpu()
if backend == "trt":
option.use_trt_backend()
else:
option.use_paddle_infer_backend()
det_option = option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960])
# det_option.set_trt_cache_file("det_trt_cache.trt")
print(det_model_file, det_params_file)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option
)
cls_batch_size = 1
rec_batch_size = 6
cls_option = option
cls_option.set_trt_input_shape(
"x", [1, 3, 48, 10], [cls_batch_size, 3, 48, 320], [cls_batch_size, 3, 48, 1024]
)
# cls_option.set_trt_cache_file("cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option
)
rec_option = option
rec_option.set_trt_input_shape(
"x", [1, 3, 48, 10], [rec_batch_size, 3, 48, 320], [rec_batch_size, 3, 48, 2304]
)
# rec_option.set_trt_cache_file("rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option
)
# Create PPOCRv3 pipeline
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model
)
ppocr_v3.cls_batch_size = cls_batch_size
ppocr_v3.rec_batch_size = rec_batch_size
# Create server, setup REST API
app = SimpleServer()
app.register(
task_name="fd/ppocrv3",
model_handler=fd.serving.handler.VisionModelHandler,
predictor=ppocr_v3,
)