You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

144 lines
4.2 KiB
Python

9 months ago
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR."
)
parser.add_argument(
"--cls_model", required=True, help="Path of Classification model of PPOCR."
)
parser.add_argument(
"--rec_model", required=True, help="Path of Recognization model of PPOCR."
)
parser.add_argument(
"--rec_label_file", required=True, help="Path of Recognization model of PPOCR."
)
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file."
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.",
)
parser.add_argument(
"--cpu_thread_num",
type=int,
default=9,
help="Number of threads while inference on CPU.",
)
return parser.parse_args()
def build_option(args):
det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
if args.device == "npu":
det_option.use_rknpu2()
cls_option.use_rknpu2()
rec_option.use_rknpu2()
return det_option, cls_option, rec_option
def build_format(args):
det_format = fd.ModelFormat.ONNX
cls_format = fd.ModelFormat.ONNX
rec_format = fd.ModelFormat.ONNX
if args.device == "npu":
det_format = fd.ModelFormat.RKNN
cls_format = fd.ModelFormat.RKNN
rec_format = fd.ModelFormat.RKNN
return det_format, cls_format, rec_format
args = parse_arguments()
# Detection模型, 检测文字框
det_model_file = args.det_model
det_params_file = ""
# Classification模型方向分类可选
cls_model_file = args.cls_model
cls_params_file = ""
# Recognition模型文字识别模型
rec_model_file = args.rec_model
rec_params_file = ""
rec_label_file = args.rec_label_file
det_option, cls_option, rec_option = build_option(args)
det_format, cls_format, rec_format = build_format(args)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option, model_format=det_format
)
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option, model_format=cls_format
)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file,
rec_params_file,
rec_label_file,
runtime_option=rec_option,
model_format=rec_format,
)
# Det,Rec模型启用静态shape推理
det_model.preprocessor.static_shape_infer = True
rec_model.preprocessor.static_shape_infer = True
if args.device == "npu":
det_model.preprocessor.disable_normalize()
det_model.preprocessor.disable_permute()
cls_model.preprocessor.disable_normalize()
cls_model.preprocessor.disable_permute()
rec_model.preprocessor.disable_normalize()
rec_model.preprocessor.disable_permute()
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model
)
# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
ppocr_v3.cls_batch_size = 1
ppocr_v3.rec_batch_size = 1
# 预测图片准备
im = cv2.imread(args.image)
# 预测并打印结果
result = ppocr_v3.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")