You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

171 lines
6.1 KiB
Python

8 months ago
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, __dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..")))
import paddle
from ppocr.data import build_dataloader, set_signal_handlers
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
import tools.program as program
def main():
global_config = config["Global"]
# build dataloader
set_signal_handlers()
valid_dataloader = build_dataloader(config, "Eval", device, logger)
# build post process
post_process_class = build_post_process(config["PostProcess"], global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, "character"):
char_num = len(getattr(post_process_class, "character"))
if config["Architecture"]["algorithm"] in [
"Distillation",
]: # distillation model
for key in config["Architecture"]["Models"]:
if (
config["Architecture"]["Models"][key]["Head"]["name"] == "MultiHead"
): # for multi head
out_channels_list = {}
if config["PostProcess"]["name"] == "DistillationSARLabelDecode":
char_num = char_num - 2
if config["PostProcess"]["name"] == "DistillationNRTRLabelDecode":
char_num = char_num - 3
out_channels_list["CTCLabelDecode"] = char_num
out_channels_list["SARLabelDecode"] = char_num + 2
out_channels_list["NRTRLabelDecode"] = char_num + 3
config["Architecture"]["Models"][key]["Head"][
"out_channels_list"
] = out_channels_list
else:
config["Architecture"]["Models"][key]["Head"][
"out_channels"
] = char_num
elif config["Architecture"]["Head"]["name"] == "MultiHead": # for multi head
out_channels_list = {}
if config["PostProcess"]["name"] == "SARLabelDecode":
char_num = char_num - 2
if config["PostProcess"]["name"] == "NRTRLabelDecode":
char_num = char_num - 3
out_channels_list["CTCLabelDecode"] = char_num
out_channels_list["SARLabelDecode"] = char_num + 2
out_channels_list["NRTRLabelDecode"] = char_num + 3
config["Architecture"]["Head"]["out_channels_list"] = out_channels_list
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num
model = build_model(config["Architecture"])
extra_input_models = [
"SRN",
"NRTR",
"SAR",
"SEED",
"SVTR",
"SVTR_LCNet",
"VisionLAN",
"RobustScanner",
"SVTR_HGNet",
]
extra_input = False
if config["Architecture"]["algorithm"] == "Distillation":
for key in config["Architecture"]["Models"]:
extra_input = (
extra_input
or config["Architecture"]["Models"][key]["algorithm"]
in extra_input_models
)
else:
extra_input = config["Architecture"]["algorithm"] in extra_input_models
if "model_type" in config["Architecture"].keys():
if config["Architecture"]["algorithm"] == "CAN":
model_type = "can"
elif config["Architecture"]["algorithm"] == "LaTeXOCR":
model_type = "latexocr"
config["Metric"]["cal_blue_score"] = True
else:
model_type = config["Architecture"]["model_type"]
else:
model_type = None
# build metric
eval_class = build_metric(config["Metric"])
# amp
use_amp = config["Global"].get("use_amp", False)
amp_level = config["Global"].get("amp_level", "O2")
amp_custom_black_list = config["Global"].get("amp_custom_black_list", [])
if use_amp:
AMP_RELATED_FLAGS_SETTING = {
"FLAGS_cudnn_batchnorm_spatial_persistent": 1,
"FLAGS_max_inplace_grad_add": 8,
}
paddle.set_flags(AMP_RELATED_FLAGS_SETTING)
scale_loss = config["Global"].get("scale_loss", 1.0)
use_dynamic_loss_scaling = config["Global"].get(
"use_dynamic_loss_scaling", False
)
scaler = paddle.amp.GradScaler(
init_loss_scaling=scale_loss,
use_dynamic_loss_scaling=use_dynamic_loss_scaling,
)
if amp_level == "O2":
model = paddle.amp.decorate(
models=model, level=amp_level, master_weight=True
)
else:
scaler = None
best_model_dict = load_model(
config, model, model_type=config["Architecture"]["model_type"]
)
if len(best_model_dict):
logger.info("metric in ckpt ***************")
for k, v in best_model_dict.items():
logger.info("{}:{}".format(k, v))
# start eval
metric = program.eval(
model,
valid_dataloader,
post_process_class,
eval_class,
model_type,
extra_input,
scaler,
amp_level,
amp_custom_black_list,
)
logger.info("metric eval ***************")
for k, v in metric.items():
logger.info("{}:{}".format(k, v))
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess()
main()