You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
6.1 KiB
Python
171 lines
6.1 KiB
Python
8 months ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||
|
sys.path.insert(0, __dir__)
|
||
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..")))
|
||
|
|
||
|
import paddle
|
||
|
from ppocr.data import build_dataloader, set_signal_handlers
|
||
|
from ppocr.modeling.architectures import build_model
|
||
|
from ppocr.postprocess import build_post_process
|
||
|
from ppocr.metrics import build_metric
|
||
|
from ppocr.utils.save_load import load_model
|
||
|
import tools.program as program
|
||
|
|
||
|
|
||
|
def main():
|
||
|
global_config = config["Global"]
|
||
|
# build dataloader
|
||
|
set_signal_handlers()
|
||
|
valid_dataloader = build_dataloader(config, "Eval", device, logger)
|
||
|
|
||
|
# build post process
|
||
|
post_process_class = build_post_process(config["PostProcess"], global_config)
|
||
|
|
||
|
# build model
|
||
|
# for rec algorithm
|
||
|
if hasattr(post_process_class, "character"):
|
||
|
char_num = len(getattr(post_process_class, "character"))
|
||
|
if config["Architecture"]["algorithm"] in [
|
||
|
"Distillation",
|
||
|
]: # distillation model
|
||
|
for key in config["Architecture"]["Models"]:
|
||
|
if (
|
||
|
config["Architecture"]["Models"][key]["Head"]["name"] == "MultiHead"
|
||
|
): # for multi head
|
||
|
out_channels_list = {}
|
||
|
if config["PostProcess"]["name"] == "DistillationSARLabelDecode":
|
||
|
char_num = char_num - 2
|
||
|
if config["PostProcess"]["name"] == "DistillationNRTRLabelDecode":
|
||
|
char_num = char_num - 3
|
||
|
out_channels_list["CTCLabelDecode"] = char_num
|
||
|
out_channels_list["SARLabelDecode"] = char_num + 2
|
||
|
out_channels_list["NRTRLabelDecode"] = char_num + 3
|
||
|
config["Architecture"]["Models"][key]["Head"][
|
||
|
"out_channels_list"
|
||
|
] = out_channels_list
|
||
|
else:
|
||
|
config["Architecture"]["Models"][key]["Head"][
|
||
|
"out_channels"
|
||
|
] = char_num
|
||
|
elif config["Architecture"]["Head"]["name"] == "MultiHead": # for multi head
|
||
|
out_channels_list = {}
|
||
|
if config["PostProcess"]["name"] == "SARLabelDecode":
|
||
|
char_num = char_num - 2
|
||
|
if config["PostProcess"]["name"] == "NRTRLabelDecode":
|
||
|
char_num = char_num - 3
|
||
|
out_channels_list["CTCLabelDecode"] = char_num
|
||
|
out_channels_list["SARLabelDecode"] = char_num + 2
|
||
|
out_channels_list["NRTRLabelDecode"] = char_num + 3
|
||
|
config["Architecture"]["Head"]["out_channels_list"] = out_channels_list
|
||
|
else: # base rec model
|
||
|
config["Architecture"]["Head"]["out_channels"] = char_num
|
||
|
|
||
|
model = build_model(config["Architecture"])
|
||
|
extra_input_models = [
|
||
|
"SRN",
|
||
|
"NRTR",
|
||
|
"SAR",
|
||
|
"SEED",
|
||
|
"SVTR",
|
||
|
"SVTR_LCNet",
|
||
|
"VisionLAN",
|
||
|
"RobustScanner",
|
||
|
"SVTR_HGNet",
|
||
|
]
|
||
|
extra_input = False
|
||
|
if config["Architecture"]["algorithm"] == "Distillation":
|
||
|
for key in config["Architecture"]["Models"]:
|
||
|
extra_input = (
|
||
|
extra_input
|
||
|
or config["Architecture"]["Models"][key]["algorithm"]
|
||
|
in extra_input_models
|
||
|
)
|
||
|
else:
|
||
|
extra_input = config["Architecture"]["algorithm"] in extra_input_models
|
||
|
if "model_type" in config["Architecture"].keys():
|
||
|
if config["Architecture"]["algorithm"] == "CAN":
|
||
|
model_type = "can"
|
||
|
elif config["Architecture"]["algorithm"] == "LaTeXOCR":
|
||
|
model_type = "latexocr"
|
||
|
config["Metric"]["cal_blue_score"] = True
|
||
|
else:
|
||
|
model_type = config["Architecture"]["model_type"]
|
||
|
else:
|
||
|
model_type = None
|
||
|
|
||
|
# build metric
|
||
|
eval_class = build_metric(config["Metric"])
|
||
|
# amp
|
||
|
use_amp = config["Global"].get("use_amp", False)
|
||
|
amp_level = config["Global"].get("amp_level", "O2")
|
||
|
amp_custom_black_list = config["Global"].get("amp_custom_black_list", [])
|
||
|
if use_amp:
|
||
|
AMP_RELATED_FLAGS_SETTING = {
|
||
|
"FLAGS_cudnn_batchnorm_spatial_persistent": 1,
|
||
|
"FLAGS_max_inplace_grad_add": 8,
|
||
|
}
|
||
|
paddle.set_flags(AMP_RELATED_FLAGS_SETTING)
|
||
|
scale_loss = config["Global"].get("scale_loss", 1.0)
|
||
|
use_dynamic_loss_scaling = config["Global"].get(
|
||
|
"use_dynamic_loss_scaling", False
|
||
|
)
|
||
|
scaler = paddle.amp.GradScaler(
|
||
|
init_loss_scaling=scale_loss,
|
||
|
use_dynamic_loss_scaling=use_dynamic_loss_scaling,
|
||
|
)
|
||
|
if amp_level == "O2":
|
||
|
model = paddle.amp.decorate(
|
||
|
models=model, level=amp_level, master_weight=True
|
||
|
)
|
||
|
else:
|
||
|
scaler = None
|
||
|
|
||
|
best_model_dict = load_model(
|
||
|
config, model, model_type=config["Architecture"]["model_type"]
|
||
|
)
|
||
|
if len(best_model_dict):
|
||
|
logger.info("metric in ckpt ***************")
|
||
|
for k, v in best_model_dict.items():
|
||
|
logger.info("{}:{}".format(k, v))
|
||
|
|
||
|
# start eval
|
||
|
metric = program.eval(
|
||
|
model,
|
||
|
valid_dataloader,
|
||
|
post_process_class,
|
||
|
eval_class,
|
||
|
model_type,
|
||
|
extra_input,
|
||
|
scaler,
|
||
|
amp_level,
|
||
|
amp_custom_black_list,
|
||
|
)
|
||
|
logger.info("metric eval ***************")
|
||
|
for k, v in metric.items():
|
||
|
logger.info("{}:{}".format(k, v))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
config, device, logger, vdl_writer = program.preprocess()
|
||
|
main()
|