You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
4.6 KiB
Python
144 lines
4.6 KiB
Python
8 months ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||
|
sys.path.append(__dir__)
|
||
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../..")))
|
||
|
|
||
|
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import time
|
||
|
|
||
|
import tools.infer.utility as utility
|
||
|
from ppocr.data import create_operators, transform
|
||
|
from ppocr.postprocess import build_post_process
|
||
|
from ppocr.utils.logging import get_logger
|
||
|
from ppocr.utils.utility import get_image_file_list, check_and_read
|
||
|
from ppstructure.utility import parse_args
|
||
|
from picodet_postprocess import PicoDetPostProcess
|
||
|
|
||
|
logger = get_logger()
|
||
|
|
||
|
|
||
|
class LayoutPredictor(object):
|
||
|
def __init__(self, args):
|
||
|
pre_process_list = [
|
||
|
{"Resize": {"size": [800, 608]}},
|
||
|
{
|
||
|
"NormalizeImage": {
|
||
|
"std": [0.229, 0.224, 0.225],
|
||
|
"mean": [0.485, 0.456, 0.406],
|
||
|
"scale": "1./255.",
|
||
|
"order": "hwc",
|
||
|
}
|
||
|
},
|
||
|
{"ToCHWImage": None},
|
||
|
{"KeepKeys": {"keep_keys": ["image"]}},
|
||
|
]
|
||
|
postprocess_params = {
|
||
|
"name": "PicoDetPostProcess",
|
||
|
"layout_dict_path": args.layout_dict_path,
|
||
|
"score_threshold": args.layout_score_threshold,
|
||
|
"nms_threshold": args.layout_nms_threshold,
|
||
|
}
|
||
|
|
||
|
self.preprocess_op = create_operators(pre_process_list)
|
||
|
self.postprocess_op = build_post_process(postprocess_params)
|
||
|
(
|
||
|
self.predictor,
|
||
|
self.input_tensor,
|
||
|
self.output_tensors,
|
||
|
self.config,
|
||
|
) = utility.create_predictor(args, "layout", logger)
|
||
|
self.use_onnx = args.use_onnx
|
||
|
|
||
|
def __call__(self, img):
|
||
|
ori_im = img.copy()
|
||
|
data = {"image": img}
|
||
|
data = transform(data, self.preprocess_op)
|
||
|
img = data[0]
|
||
|
|
||
|
if img is None:
|
||
|
return None, 0
|
||
|
|
||
|
img = np.expand_dims(img, axis=0)
|
||
|
img = img.copy()
|
||
|
|
||
|
preds, elapse = 0, 1
|
||
|
starttime = time.time()
|
||
|
|
||
|
np_score_list, np_boxes_list = [], []
|
||
|
if self.use_onnx:
|
||
|
input_dict = {}
|
||
|
input_dict[self.input_tensor.name] = img
|
||
|
outputs = self.predictor.run(self.output_tensors, input_dict)
|
||
|
num_outs = int(len(outputs) / 2)
|
||
|
for out_idx in range(num_outs):
|
||
|
np_score_list.append(outputs[out_idx])
|
||
|
np_boxes_list.append(outputs[out_idx + num_outs])
|
||
|
else:
|
||
|
self.input_tensor.copy_from_cpu(img)
|
||
|
self.predictor.run()
|
||
|
output_names = self.predictor.get_output_names()
|
||
|
num_outs = int(len(output_names) / 2)
|
||
|
for out_idx in range(num_outs):
|
||
|
np_score_list.append(
|
||
|
self.predictor.get_output_handle(
|
||
|
output_names[out_idx]
|
||
|
).copy_to_cpu()
|
||
|
)
|
||
|
np_boxes_list.append(
|
||
|
self.predictor.get_output_handle(
|
||
|
output_names[out_idx + num_outs]
|
||
|
).copy_to_cpu()
|
||
|
)
|
||
|
preds = dict(boxes=np_score_list, boxes_num=np_boxes_list)
|
||
|
|
||
|
post_preds = self.postprocess_op(ori_im, img, preds)
|
||
|
elapse = time.time() - starttime
|
||
|
return post_preds, elapse
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
image_file_list = get_image_file_list(args.image_dir)
|
||
|
layout_predictor = LayoutPredictor(args)
|
||
|
count = 0
|
||
|
total_time = 0
|
||
|
|
||
|
repeats = 50
|
||
|
for image_file in image_file_list:
|
||
|
img, flag, _ = check_and_read(image_file)
|
||
|
if not flag:
|
||
|
img = cv2.imread(image_file)
|
||
|
if img is None:
|
||
|
logger.info("error in loading image:{}".format(image_file))
|
||
|
continue
|
||
|
|
||
|
layout_res, elapse = layout_predictor(img)
|
||
|
|
||
|
logger.info("result: {}".format(layout_res))
|
||
|
|
||
|
if count > 0:
|
||
|
total_time += elapse
|
||
|
count += 1
|
||
|
logger.info("Predict time of {}: {}".format(image_file, elapse))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main(parse_args())
|