You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

366 lines
11 KiB
Python

8 months ago
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/backbones/table_resnet_extra.py
"""
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, gcb_config=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2D(
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias_attr=False
)
self.bn1 = nn.BatchNorm2D(planes, momentum=0.9)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2D(
planes, planes, kernel_size=3, stride=1, padding=1, bias_attr=False
)
self.bn2 = nn.BatchNorm2D(planes, momentum=0.9)
self.downsample = downsample
self.stride = stride
self.gcb_config = gcb_config
if self.gcb_config is not None:
gcb_ratio = gcb_config["ratio"]
gcb_headers = gcb_config["headers"]
att_scale = gcb_config["att_scale"]
fusion_type = gcb_config["fusion_type"]
self.context_block = MultiAspectGCAttention(
inplanes=planes,
ratio=gcb_ratio,
headers=gcb_headers,
att_scale=att_scale,
fusion_type=fusion_type,
)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.gcb_config is not None:
out = self.context_block(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
def get_gcb_config(gcb_config, layer):
if gcb_config is None or not gcb_config["layers"][layer]:
return None
else:
return gcb_config
class TableResNetExtra(nn.Layer):
def __init__(self, layers, in_channels=3, gcb_config=None):
assert len(layers) >= 4
super(TableResNetExtra, self).__init__()
self.inplanes = 128
self.conv1 = nn.Conv2D(
in_channels, 64, kernel_size=3, stride=1, padding=1, bias_attr=False
)
self.bn1 = nn.BatchNorm2D(64)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2D(
64, 128, kernel_size=3, stride=1, padding=1, bias_attr=False
)
self.bn2 = nn.BatchNorm2D(128)
self.relu2 = nn.ReLU()
self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2)
self.layer1 = self._make_layer(
BasicBlock,
256,
layers[0],
stride=1,
gcb_config=get_gcb_config(gcb_config, 0),
)
self.conv3 = nn.Conv2D(
256, 256, kernel_size=3, stride=1, padding=1, bias_attr=False
)
self.bn3 = nn.BatchNorm2D(256)
self.relu3 = nn.ReLU()
self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2)
self.layer2 = self._make_layer(
BasicBlock,
256,
layers[1],
stride=1,
gcb_config=get_gcb_config(gcb_config, 1),
)
self.conv4 = nn.Conv2D(
256, 256, kernel_size=3, stride=1, padding=1, bias_attr=False
)
self.bn4 = nn.BatchNorm2D(256)
self.relu4 = nn.ReLU()
self.maxpool3 = nn.MaxPool2D(kernel_size=2, stride=2)
self.layer3 = self._make_layer(
BasicBlock,
512,
layers[2],
stride=1,
gcb_config=get_gcb_config(gcb_config, 2),
)
self.conv5 = nn.Conv2D(
512, 512, kernel_size=3, stride=1, padding=1, bias_attr=False
)
self.bn5 = nn.BatchNorm2D(512)
self.relu5 = nn.ReLU()
self.layer4 = self._make_layer(
BasicBlock,
512,
layers[3],
stride=1,
gcb_config=get_gcb_config(gcb_config, 3),
)
self.conv6 = nn.Conv2D(
512, 512, kernel_size=3, stride=1, padding=1, bias_attr=False
)
self.bn6 = nn.BatchNorm2D(512)
self.relu6 = nn.ReLU()
self.out_channels = [256, 256, 512]
def _make_layer(self, block, planes, blocks, stride=1, gcb_config=None):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2D(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias_attr=False,
),
nn.BatchNorm2D(planes * block.expansion),
)
layers = []
layers.append(
block(self.inplanes, planes, stride, downsample, gcb_config=gcb_config)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
f = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
f.append(x)
x = self.maxpool2(x)
x = self.layer2(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu4(x)
f.append(x)
x = self.maxpool3(x)
x = self.layer3(x)
x = self.conv5(x)
x = self.bn5(x)
x = self.relu5(x)
x = self.layer4(x)
x = self.conv6(x)
x = self.bn6(x)
x = self.relu6(x)
f.append(x)
return f
class MultiAspectGCAttention(nn.Layer):
def __init__(
self,
inplanes,
ratio,
headers,
pooling_type="att",
att_scale=False,
fusion_type="channel_add",
):
super(MultiAspectGCAttention, self).__init__()
assert pooling_type in ["avg", "att"]
assert fusion_type in ["channel_add", "channel_mul", "channel_concat"]
assert (
inplanes % headers == 0 and inplanes >= 8
) # inplanes must be divided by headers evenly
self.headers = headers
self.inplanes = inplanes
self.ratio = ratio
self.planes = int(inplanes * ratio)
self.pooling_type = pooling_type
self.fusion_type = fusion_type
self.att_scale = False
self.single_header_inplanes = int(inplanes / headers)
if pooling_type == "att":
self.conv_mask = nn.Conv2D(self.single_header_inplanes, 1, kernel_size=1)
self.softmax = nn.Softmax(axis=2)
else:
self.avg_pool = nn.AdaptiveAvgPool2D(1)
if fusion_type == "channel_add":
self.channel_add_conv = nn.Sequential(
nn.Conv2D(self.inplanes, self.planes, kernel_size=1),
nn.LayerNorm([self.planes, 1, 1]),
nn.ReLU(),
nn.Conv2D(self.planes, self.inplanes, kernel_size=1),
)
elif fusion_type == "channel_concat":
self.channel_concat_conv = nn.Sequential(
nn.Conv2D(self.inplanes, self.planes, kernel_size=1),
nn.LayerNorm([self.planes, 1, 1]),
nn.ReLU(),
nn.Conv2D(self.planes, self.inplanes, kernel_size=1),
)
# for concat
self.cat_conv = nn.Conv2D(2 * self.inplanes, self.inplanes, kernel_size=1)
elif fusion_type == "channel_mul":
self.channel_mul_conv = nn.Sequential(
nn.Conv2D(self.inplanes, self.planes, kernel_size=1),
nn.LayerNorm([self.planes, 1, 1]),
nn.ReLU(),
nn.Conv2D(self.planes, self.inplanes, kernel_size=1),
)
def spatial_pool(self, x):
batch, channel, height, width = x.shape
if self.pooling_type == "att":
# [N*headers, C', H , W] C = headers * C'
x = x.reshape(
[batch * self.headers, self.single_header_inplanes, height, width]
)
input_x = x
# [N*headers, C', H * W] C = headers * C'
# input_x = input_x.view(batch, channel, height * width)
input_x = input_x.reshape(
[batch * self.headers, self.single_header_inplanes, height * width]
)
# [N*headers, 1, C', H * W]
input_x = input_x.unsqueeze(1)
# [N*headers, 1, H, W]
context_mask = self.conv_mask(x)
# [N*headers, 1, H * W]
context_mask = context_mask.reshape(
[batch * self.headers, 1, height * width]
)
# scale variance
if self.att_scale and self.headers > 1:
context_mask = context_mask / paddle.sqrt(self.single_header_inplanes)
# [N*headers, 1, H * W]
context_mask = self.softmax(context_mask)
# [N*headers, 1, H * W, 1]
context_mask = context_mask.unsqueeze(-1)
# [N*headers, 1, C', 1] = [N*headers, 1, C', H * W] * [N*headers, 1, H * W, 1]
context = paddle.matmul(input_x, context_mask)
# [N, headers * C', 1, 1]
context = context.reshape(
[batch, self.headers * self.single_header_inplanes, 1, 1]
)
else:
# [N, C, 1, 1]
context = self.avg_pool(x)
return context
def forward(self, x):
# [N, C, 1, 1]
context = self.spatial_pool(x)
out = x
if self.fusion_type == "channel_mul":
# [N, C, 1, 1]
channel_mul_term = F.sigmoid(self.channel_mul_conv(context))
out = out * channel_mul_term
elif self.fusion_type == "channel_add":
# [N, C, 1, 1]
channel_add_term = self.channel_add_conv(context)
out = out + channel_add_term
else:
# [N, C, 1, 1]
channel_concat_term = self.channel_concat_conv(context)
# use concat
_, C1, _, _ = channel_concat_term.shape
N, C2, H, W = out.shape
out = paddle.concat(
[out, channel_concat_term.expand([-1, -1, H, W])], axis=1
)
out = self.cat_conv(out)
out = F.layer_norm(out, [self.inplanes, H, W])
out = F.relu(out)
return out