You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.0 KiB
Markdown
137 lines
4.0 KiB
Markdown
8 months ago
|
# Text Gestalt
|
||
|
|
||
|
- [1. Introduction](#1)
|
||
|
- [2. Environment](#2)
|
||
|
- [3. Model Training / Evaluation / Prediction](#3)
|
||
|
- [3.1 Training](#3-1)
|
||
|
- [3.2 Evaluation](#3-2)
|
||
|
- [3.3 Prediction](#3-3)
|
||
|
- [4. Inference and Deployment](#4)
|
||
|
- [4.1 Python Inference](#4-1)
|
||
|
- [4.2 C++ Inference](#4-2)
|
||
|
- [4.3 Serving](#4-3)
|
||
|
- [4.4 More](#4-4)
|
||
|
- [5. FAQ](#5)
|
||
|
|
||
|
|
||
|
<a name="1"></a>
|
||
|
## 1. Introduction
|
||
|
|
||
|
Paper:
|
||
|
> [Text Gestalt: Stroke-Aware Scene Text Image Super-Resolution](https://arxiv.org/pdf/2112.08171.pdf)
|
||
|
|
||
|
> Chen, Jingye and Yu, Haiyang and Ma, Jianqi and Li, Bin and Xue, Xiangyang
|
||
|
|
||
|
> AAAI, 2022
|
||
|
|
||
|
Referring to the [FudanOCR](https://github.com/FudanVI/FudanOCR/tree/main/text-gestalt) data download instructions, the effect of the super-score algorithm on the TextZoom test set is as follows:
|
||
|
|
||
|
|Model|Backbone|config|Acc|Download link|
|
||
|
|---|---|---|---|---|---|
|
||
|
|Text Gestalt|tsrn|19.28|0.6560| [configs/sr/sr_tsrn_transformer_strock.yml](../../configs/sr/sr_tsrn_transformer_strock.yml)|[train model](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar)|
|
||
|
|
||
|
|
||
|
<a name="2"></a>
|
||
|
## 2. Environment
|
||
|
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
|
||
|
|
||
|
|
||
|
<a name="3"></a>
|
||
|
## 3. Model Training / Evaluation / Prediction
|
||
|
|
||
|
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different models only requires **changing the configuration file**.
|
||
|
|
||
|
Training:
|
||
|
|
||
|
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||
|
|
||
|
```
|
||
|
#Single GPU training (long training period, not recommended)
|
||
|
|
||
|
python3 tools/train.py -c configs/sr/sr_tsrn_transformer_strock.yml
|
||
|
|
||
|
#Multi GPU training, specify the gpu number through the --gpus parameter
|
||
|
|
||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/sr/sr_tsrn_transformer_strock.yml
|
||
|
|
||
|
```
|
||
|
|
||
|
|
||
|
Evaluation:
|
||
|
|
||
|
```
|
||
|
# GPU evaluation
|
||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||
|
```
|
||
|
|
||
|
Prediction:
|
||
|
|
||
|
```
|
||
|
# The configuration file used for prediction must match the training
|
||
|
|
||
|
python3 tools/infer_sr.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_52.png
|
||
|
```
|
||
|
|
||
|

|
||
|
|
||
|
After executing the command, the super-resolution result of the above image is as follows:
|
||
|
|
||
|

|
||
|
|
||
|
<a name="4"></a>
|
||
|
## 4. Inference and Deployment
|
||
|
|
||
|
<a name="4-1"></a>
|
||
|
### 4.1 Python Inference
|
||
|
|
||
|
First, the model saved during the training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar) ), you can use the following command to convert:
|
||
|
|
||
|
```shell
|
||
|
python3 tools/export_model.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/sr_out
|
||
|
```
|
||
|
|
||
|
For Text-Gestalt super-resolution model inference, the following commands can be executed:
|
||
|
|
||
|
```
|
||
|
python3 tools/infer/predict_sr.py --sr_model_dir=./inference/sr_out --image_dir=doc/imgs_words_en/word_52.png --sr_image_shape=3,32,128
|
||
|
|
||
|
```
|
||
|
|
||
|
After executing the command, the super-resolution result of the above image is as follows:
|
||
|
|
||
|

|
||
|
|
||
|
|
||
|
<a name="4-2"></a>
|
||
|
### 4.2 C++ Inference
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
<a name="4-3"></a>
|
||
|
### 4.3 Serving
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
<a name="4-4"></a>
|
||
|
### 4.4 More
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
<a name="5"></a>
|
||
|
## 5. FAQ
|
||
|
|
||
|
|
||
|
## Citation
|
||
|
|
||
|
```bibtex
|
||
|
@inproceedings{chen2022text,
|
||
|
title={Text gestalt: Stroke-aware scene text image super-resolution},
|
||
|
author={Chen, Jingye and Yu, Haiyang and Ma, Jianqi and Li, Bin and Xue, Xiangyang},
|
||
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
||
|
volume={36},
|
||
|
number={1},
|
||
|
pages={285--293},
|
||
|
year={2022}
|
||
|
}
|
||
|
```
|