You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
4.5 KiB
Markdown
120 lines
4.5 KiB
Markdown
8 months ago
|
# CAN
|
||
|
|
||
|
- [1. Introduction](#1)
|
||
|
- [2. Environment](#2)
|
||
|
- [3. Model Training / Evaluation / Prediction](#3)
|
||
|
- [3.1 Training](#3-1)
|
||
|
- [3.2 Evaluation](#3-2)
|
||
|
- [3.3 Prediction](#3-3)
|
||
|
- [4. Inference and Deployment](#4)
|
||
|
- [4.1 Python Inference](#4-1)
|
||
|
- [4.2 C++ Inference](#4-2)
|
||
|
- [4.3 Serving](#4-3)
|
||
|
- [4.4 More](#4-4)
|
||
|
- [5. FAQ](#5)
|
||
|
|
||
|
<a name="1"></a>
|
||
|
## 1. Introduction
|
||
|
|
||
|
Paper:
|
||
|
> [When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical Expression Recognition](https://arxiv.org/abs/2207.11463)
|
||
|
> Bohan Li, Ye Yuan, Dingkang Liang, Xiao Liu, Zhilong Ji, Jinfeng Bai, Wenyu Liu, Xiang Bai
|
||
|
> ECCV, 2022
|
||
|
|
||
|
Using CROHME handwrittem mathematical expression recognition datasets for training, and evaluating on its test sets, the algorithm reproduction effect is as follows:
|
||
|
|
||
|
|Model|Backbone|config|exprate|Download link|
|
||
|
| --- | --- | --- | --- | --- |
|
||
|
|CAN|DenseNet|[rec_d28_can.yml](../../configs/rec/rec_d28_can.yml)|51.72%|[trained model](https://paddleocr.bj.bcebos.com/contribution/rec_d28_can_train.tar)|
|
||
|
|
||
|
<a name="2"></a>
|
||
|
## 2. Environment
|
||
|
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
|
||
|
|
||
|
|
||
|
<a name="3"></a>
|
||
|
## 3. Model Training / Evaluation / Prediction
|
||
|
|
||
|
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
||
|
|
||
|
Training:
|
||
|
|
||
|
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||
|
|
||
|
```
|
||
|
#Single GPU training (long training period, not recommended)
|
||
|
python3 tools/train.py -c configs/rec/rec_d28_can.yml
|
||
|
|
||
|
#Multi GPU training, specify the gpu number through the --gpus parameter
|
||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_d28_can.yml
|
||
|
```
|
||
|
|
||
|
Evaluation:
|
||
|
|
||
|
```
|
||
|
# GPU evaluation
|
||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams
|
||
|
```
|
||
|
|
||
|
Prediction:
|
||
|
|
||
|
```
|
||
|
# The configuration file used for prediction must match the training
|
||
|
python3 tools/infer_rec.py -c configs/rec/rec_d28_can.yml -o Architecture.Head.attdecoder.is_train=False Global.infer_img='./doc/crohme_demo/hme_00.jpg' Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams
|
||
|
```
|
||
|
|
||
|
<a name="4"></a>
|
||
|
## 4. Inference and Deployment
|
||
|
|
||
|
<a name="4-1"></a>
|
||
|
### 4.1 Python Inference
|
||
|
First, the model saved during the CAN handwritten mathematical expression recognition training process is converted into an inference model. you can use the following command to convert:
|
||
|
|
||
|
```
|
||
|
python3 tools/export_model.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams Global.save_inference_dir=./inference/rec_d28_can/ Architecture.Head.attdecoder.is_train=False
|
||
|
|
||
|
# The default output max length of the model is 36. If you need to predict a longer sequence, please specify its output sequence as an appropriate value when exporting the model, as: Architecture.Head.max_ text_ length=72
|
||
|
```
|
||
|
|
||
|
For CAN handwritten mathematical expression recognition model inference, the following commands can be executed:
|
||
|
|
||
|
```
|
||
|
python3 tools/infer/predict_rec.py --image_dir="./doc/datasets/crohme_demo/hme_00.jpg" --rec_algorithm="CAN" --rec_batch_num=1 --rec_model_dir="./inference/rec_d28_can/" --rec_char_dict_path="./ppocr/utils/dict/latex_symbol_dict.txt"
|
||
|
|
||
|
# If you need to predict on a picture with black characters on a white background, please set: -- rec_ image_ inverse=False
|
||
|
```
|
||
|
|
||
|
<a name="4-2"></a>
|
||
|
### 4.2 C++ Inference
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
<a name="4-3"></a>
|
||
|
### 4.3 Serving
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
<a name="4-4"></a>
|
||
|
### 4.4 More
|
||
|
|
||
|
Not supported
|
||
|
|
||
|
<a name="5"></a>
|
||
|
## 5. FAQ
|
||
|
|
||
|
|
||
|
## Citation
|
||
|
|
||
|
```bibtex
|
||
|
@misc{https://doi.org/10.48550/arxiv.2207.11463,
|
||
|
doi = {10.48550/ARXIV.2207.11463},
|
||
|
url = {https://arxiv.org/abs/2207.11463},
|
||
|
author = {Li, Bohan and Yuan, Ye and Liang, Dingkang and Liu, Xiao and Ji, Zhilong and Bai, Jinfeng and Liu, Wenyu and Bai, Xiang},
|
||
|
keywords = {Computer Vision and Pattern Recognition (cs.CV), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
||
|
title = {When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical Expression Recognition},
|
||
|
publisher = {arXiv},
|
||
|
year = {2022},
|
||
|
copyright = {arXiv.org perpetual, non-exclusive license}
|
||
|
}
|
||
|
```
|