You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
8.1 KiB
Python
227 lines
8.1 KiB
Python
8 months ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||
|
sys.path.append(__dir__)
|
||
|
sys.path.append(os.path.abspath(os.path.join(__dir__, "..", "..", "..")))
|
||
|
sys.path.append(os.path.abspath(os.path.join(__dir__, "..", "..", "..", "tools")))
|
||
|
|
||
|
import yaml
|
||
|
import paddle
|
||
|
import paddle.distributed as dist
|
||
|
|
||
|
paddle.seed(2)
|
||
|
|
||
|
from ppocr.data import build_dataloader, set_signal_handlers
|
||
|
from ppocr.modeling.architectures import build_model
|
||
|
from ppocr.losses import build_loss
|
||
|
from ppocr.optimizer import build_optimizer
|
||
|
from ppocr.postprocess import build_post_process
|
||
|
from ppocr.metrics import build_metric
|
||
|
from ppocr.utils.save_load import load_model
|
||
|
import tools.program as program
|
||
|
from paddleslim.dygraph.quant import QAT
|
||
|
|
||
|
dist.get_world_size()
|
||
|
|
||
|
|
||
|
class PACT(paddle.nn.Layer):
|
||
|
def __init__(self):
|
||
|
super(PACT, self).__init__()
|
||
|
alpha_attr = paddle.ParamAttr(
|
||
|
name=self.full_name() + ".pact",
|
||
|
initializer=paddle.nn.initializer.Constant(value=20),
|
||
|
learning_rate=1.0,
|
||
|
regularizer=paddle.regularizer.L2Decay(2e-5),
|
||
|
)
|
||
|
|
||
|
self.alpha = self.create_parameter(shape=[1], attr=alpha_attr, dtype="float32")
|
||
|
|
||
|
def forward(self, x):
|
||
|
out_left = paddle.nn.functional.relu(x - self.alpha)
|
||
|
out_right = paddle.nn.functional.relu(-self.alpha - x)
|
||
|
x = x - out_left + out_right
|
||
|
return x
|
||
|
|
||
|
|
||
|
quant_config = {
|
||
|
# weight preprocess type, default is None and no preprocessing is performed.
|
||
|
"weight_preprocess_type": None,
|
||
|
# activation preprocess type, default is None and no preprocessing is performed.
|
||
|
"activation_preprocess_type": None,
|
||
|
# weight quantize type, default is 'channel_wise_abs_max'
|
||
|
"weight_quantize_type": "channel_wise_abs_max",
|
||
|
# activation quantize type, default is 'moving_average_abs_max'
|
||
|
"activation_quantize_type": "moving_average_abs_max",
|
||
|
# weight quantize bit num, default is 8
|
||
|
"weight_bits": 8,
|
||
|
# activation quantize bit num, default is 8
|
||
|
"activation_bits": 8,
|
||
|
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
|
||
|
"dtype": "int8",
|
||
|
# window size for 'range_abs_max' quantization. default is 10000
|
||
|
"window_size": 10000,
|
||
|
# The decay coefficient of moving average, default is 0.9
|
||
|
"moving_rate": 0.9,
|
||
|
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
|
||
|
"quantizable_layer_type": ["Conv2D", "Linear"],
|
||
|
}
|
||
|
|
||
|
|
||
|
def main(config, device, logger, vdl_writer):
|
||
|
# init dist environment
|
||
|
if config["Global"]["distributed"]:
|
||
|
dist.init_parallel_env()
|
||
|
|
||
|
global_config = config["Global"]
|
||
|
|
||
|
# build dataloader
|
||
|
set_signal_handlers()
|
||
|
train_dataloader = build_dataloader(config, "Train", device, logger)
|
||
|
if config["Eval"]:
|
||
|
valid_dataloader = build_dataloader(config, "Eval", device, logger)
|
||
|
else:
|
||
|
valid_dataloader = None
|
||
|
|
||
|
# build post process
|
||
|
post_process_class = build_post_process(config["PostProcess"], global_config)
|
||
|
|
||
|
# build model
|
||
|
# for rec algorithm
|
||
|
if hasattr(post_process_class, "character"):
|
||
|
char_num = len(getattr(post_process_class, "character"))
|
||
|
if config["Architecture"]["algorithm"] in [
|
||
|
"Distillation",
|
||
|
]: # distillation model
|
||
|
for key in config["Architecture"]["Models"]:
|
||
|
if (
|
||
|
config["Architecture"]["Models"][key]["Head"]["name"] == "MultiHead"
|
||
|
): # for multi head
|
||
|
if config["PostProcess"]["name"] == "DistillationSARLabelDecode":
|
||
|
char_num = char_num - 2
|
||
|
# update SARLoss params
|
||
|
assert (
|
||
|
list(config["Loss"]["loss_config_list"][-1].keys())[0]
|
||
|
== "DistillationSARLoss"
|
||
|
)
|
||
|
config["Loss"]["loss_config_list"][-1]["DistillationSARLoss"][
|
||
|
"ignore_index"
|
||
|
] = (char_num + 1)
|
||
|
out_channels_list = {}
|
||
|
out_channels_list["CTCLabelDecode"] = char_num
|
||
|
out_channels_list["SARLabelDecode"] = char_num + 2
|
||
|
config["Architecture"]["Models"][key]["Head"][
|
||
|
"out_channels_list"
|
||
|
] = out_channels_list
|
||
|
else:
|
||
|
config["Architecture"]["Models"][key]["Head"][
|
||
|
"out_channels"
|
||
|
] = char_num
|
||
|
elif config["Architecture"]["Head"]["name"] == "MultiHead": # for multi head
|
||
|
if config["PostProcess"]["name"] == "SARLabelDecode":
|
||
|
char_num = char_num - 2
|
||
|
# update SARLoss params
|
||
|
assert list(config["Loss"]["loss_config_list"][1].keys())[0] == "SARLoss"
|
||
|
if config["Loss"]["loss_config_list"][1]["SARLoss"] is None:
|
||
|
config["Loss"]["loss_config_list"][1]["SARLoss"] = {
|
||
|
"ignore_index": char_num + 1
|
||
|
}
|
||
|
else:
|
||
|
config["Loss"]["loss_config_list"][1]["SARLoss"]["ignore_index"] = (
|
||
|
char_num + 1
|
||
|
)
|
||
|
out_channels_list = {}
|
||
|
out_channels_list["CTCLabelDecode"] = char_num
|
||
|
out_channels_list["SARLabelDecode"] = char_num + 2
|
||
|
config["Architecture"]["Head"]["out_channels_list"] = out_channels_list
|
||
|
else: # base rec model
|
||
|
config["Architecture"]["Head"]["out_channels"] = char_num
|
||
|
|
||
|
if config["PostProcess"]["name"] == "SARLabelDecode": # for SAR model
|
||
|
config["Loss"]["ignore_index"] = char_num - 1
|
||
|
model = build_model(config["Architecture"])
|
||
|
|
||
|
pre_best_model_dict = dict()
|
||
|
# load fp32 model to begin quantization
|
||
|
pre_best_model_dict = load_model(
|
||
|
config, model, None, config["Architecture"]["model_type"]
|
||
|
)
|
||
|
|
||
|
freeze_params = False
|
||
|
if config["Architecture"]["algorithm"] in ["Distillation"]:
|
||
|
for key in config["Architecture"]["Models"]:
|
||
|
freeze_params = freeze_params or config["Architecture"]["Models"][key].get(
|
||
|
"freeze_params", False
|
||
|
)
|
||
|
act = None if freeze_params else PACT
|
||
|
quanter = QAT(config=quant_config, act_preprocess=act)
|
||
|
quanter.quantize(model)
|
||
|
|
||
|
if config["Global"]["distributed"]:
|
||
|
model = paddle.DataParallel(model)
|
||
|
|
||
|
# build loss
|
||
|
loss_class = build_loss(config["Loss"])
|
||
|
|
||
|
# build optim
|
||
|
optimizer, lr_scheduler = build_optimizer(
|
||
|
config["Optimizer"],
|
||
|
epochs=config["Global"]["epoch_num"],
|
||
|
step_each_epoch=len(train_dataloader),
|
||
|
model=model,
|
||
|
)
|
||
|
|
||
|
# resume PACT training process
|
||
|
pre_best_model_dict = load_model(
|
||
|
config, model, optimizer, config["Architecture"]["model_type"]
|
||
|
)
|
||
|
|
||
|
# build metric
|
||
|
eval_class = build_metric(config["Metric"])
|
||
|
|
||
|
logger.info(
|
||
|
"train dataloader has {} iters, valid dataloader has {} iters".format(
|
||
|
len(train_dataloader), len(valid_dataloader)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# start train
|
||
|
program.train(
|
||
|
config,
|
||
|
train_dataloader,
|
||
|
valid_dataloader,
|
||
|
device,
|
||
|
model,
|
||
|
loss_class,
|
||
|
optimizer,
|
||
|
lr_scheduler,
|
||
|
post_process_class,
|
||
|
eval_class,
|
||
|
pre_best_model_dict,
|
||
|
logger,
|
||
|
vdl_writer,
|
||
|
)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
config, device, logger, vdl_writer = program.preprocess(is_train=True)
|
||
|
main(config, device, logger, vdl_writer)
|