|
|
|
|
[English](README.md) | 简体中文
|
|
|
|
|
# PaddleOCR服务化部署示例
|
|
|
|
|
|
|
|
|
|
PaddleOCR 服务化部署示例是利用FastDeploy Serving搭建的服务化部署示例。FastDeploy Serving是基于Triton Inference Server框架封装的适用于高并发、高吞吐量请求的服务化部署框架,是一套可用于实际生产的完备且性能卓越的服务化部署框架。如没有高并发,高吞吐场景的需求,只想快速检验模型线上部署的可行性,请参考[simple_serving](../simple_serving/)
|
|
|
|
|
|
|
|
|
|
## 1. 部署环境准备
|
|
|
|
|
在服务化部署前,需确认服务化镜像的软硬件环境要求和镜像拉取命令,请参考[FastDeploy服务化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/README_CN.md)
|
|
|
|
|
|
|
|
|
|
## 2. PP-OCRv3服务化部署介绍
|
|
|
|
|
本文介绍了使用FastDeploy搭建PP-OCRv3模型服务的方法.
|
|
|
|
|
服务端必须在docker内启动,而客户端不是必须在docker容器内.
|
|
|
|
|
|
|
|
|
|
**本文所在路径($PWD)下的models里包含模型的配置和代码(服务端会加载模型和代码以启动服务), 需要将其映射到docker中使用.**
|
|
|
|
|
|
|
|
|
|
PP-OCRv3由det(检测)、cls(分类)和rec(识别)三个模型组成.
|
|
|
|
|
|
|
|
|
|
服务化部署串联的示意图如下图所示,其中`pp_ocr`串联了`det_preprocess`、`det_runtime`和`det_postprocess`,`cls_pp`串联了`cls_runtime`和`cls_postprocess`,`rec_pp`串联了`rec_runtime`和`rec_postprocess`.
|
|
|
|
|
|
|
|
|
|
特别的是,在`det_postprocess`中会多次调用`cls_pp`和`rec_pp`服务,来实现对检测结果(多个框)进行分类和识别,,最后返回给用户最终的识别结果。
|
|
|
|
|
|
|
|
|
|
<p align="center">
|
|
|
|
|
<br>
|
|
|
|
|
<img src='./ppocr.png'">
|
|
|
|
|
<br>
|
|
|
|
|
<p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 3. 服务端的使用
|
|
|
|
|
|
|
|
|
|
### 3.1 下载模型并使用服务化Docker
|
|
|
|
|
```bash
|
|
|
|
|
# 下载仓库代码
|
|
|
|
|
# 下载部署示例代码
|
|
|
|
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
|
|
|
cd FastDeploy/examples/vision/ocr/PP-OCR/serving/fastdeploy_serving
|
|
|
|
|
|
|
|
|
|
# 如果您希望从PaddleOCR下载示例代码,请运行
|
|
|
|
|
git clone https://github.com/PaddlePaddle/PaddleOCR.git
|
|
|
|
|
# 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到dygraph分支
|
|
|
|
|
git checkout dygraph
|
|
|
|
|
cd PaddleOCR/deploy/fastdeploy/serving/fastdeploy_serving
|
|
|
|
|
|
|
|
|
|
# 下载模型,图片和字典文件
|
|
|
|
|
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
|
|
|
|
|
tar xvf ch_PP-OCRv3_det_infer.tar && mv ch_PP-OCRv3_det_infer 1
|
|
|
|
|
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel
|
|
|
|
|
mv 1 models/det_runtime/ && rm -rf ch_PP-OCRv3_det_infer.tar
|
|
|
|
|
|
|
|
|
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
|
|
|
|
|
tar xvf ch_ppocr_mobile_v2.0_cls_infer.tar && mv ch_ppocr_mobile_v2.0_cls_infer 1
|
|
|
|
|
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel
|
|
|
|
|
mv 1 models/cls_runtime/ && rm -rf ch_ppocr_mobile_v2.0_cls_infer.tar
|
|
|
|
|
|
|
|
|
|
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
|
|
|
|
|
tar xvf ch_PP-OCRv3_rec_infer.tar && mv ch_PP-OCRv3_rec_infer 1
|
|
|
|
|
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel
|
|
|
|
|
mv 1 models/rec_runtime/ && rm -rf ch_PP-OCRv3_rec_infer.tar
|
|
|
|
|
|
|
|
|
|
mkdir models/pp_ocr/1 && mkdir models/rec_pp/1 && mkdir models/cls_pp/1
|
|
|
|
|
|
|
|
|
|
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
|
|
|
|
|
mv ppocr_keys_v1.txt models/rec_postprocess/1/
|
|
|
|
|
|
|
|
|
|
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
|
|
|
|
|
|
|
|
|
|
# x.y.z为镜像版本号,需参照serving文档替换为数字
|
|
|
|
|
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10
|
|
|
|
|
docker run -dit --net=host --name fastdeploy --shm-size="1g" -v $PWD:/ocr_serving registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 bash
|
|
|
|
|
docker exec -it -u root fastdeploy bash
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 3.2 安装(在docker内)
|
|
|
|
|
```bash
|
|
|
|
|
ldconfig
|
|
|
|
|
apt-get install libgl1
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
#### 3.3 启动服务端(在docker内)
|
|
|
|
|
```bash
|
|
|
|
|
fastdeployserver --model-repository=/ocr_serving/models
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- `model-repository`(required): 整套模型streaming_pp_tts存放的路径.
|
|
|
|
|
- `http-port`(optional): HTTP服务的端口号. 默认: `8000`. 本示例中未使用该端口.
|
|
|
|
|
- `grpc-port`(optional): GRPC服务的端口号. 默认: `8001`.
|
|
|
|
|
- `metrics-port`(optional): 服务端指标的端口号. 默认: `8002`. 本示例中未使用该端口.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 4. 客户端的使用
|
|
|
|
|
### 4.1 安装
|
|
|
|
|
```bash
|
|
|
|
|
pip3 install tritonclient[all]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 4.2 发送请求
|
|
|
|
|
```bash
|
|
|
|
|
python3 client.py
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 5.配置修改
|
|
|
|
|
当前默认配置在GPU上运行, 如果要在CPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md)
|
|
|
|
|
|
|
|
|
|
## 6. 其他指南
|
|
|
|
|
|
|
|
|
|
- 使用PP-OCRv2进行服务化部署, 除了自行准备PP-OCRv2模型之外, 只需手动添加一行代码即可.
|
|
|
|
|
在[model.py](./models/det_postprocess/1/model.py#L109)文件**109行添加以下代码**:
|
|
|
|
|
```
|
|
|
|
|
self.rec_preprocessor.cls_image_shape[1] = 32
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- [使用 VisualDL 进行 Serving 可视化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/vdl_management.md)
|
|
|
|
|
通过VisualDL的可视化界面对PP-OCRv3进行服务化部署只需要如下三步:
|
|
|
|
|
```text
|
|
|
|
|
1. 载入模型库:./vision/ocr/PP-OCRv3/serving
|
|
|
|
|
2. 下载模型资源文件:点击det_runtime模型,点击版本号1添加预训练模型,选择文字识别模型ch_PP-OCRv3_det进行下载。点击cls_runtime模型,点击版本号1添加预训练模型,选择文字识别模型ch_ppocr_mobile_v2.0_cls进行下载。点击rec_runtime模型,点击版本号1添加预训练模型,选择文字识别模型ch_PP-OCRv3_rec进行下载。点击rec_postprocess模型,点击版本号1添加预训练模型,选择文字识别模型ch_PP-OCRv3_rec进行下载。
|
|
|
|
|
3. 启动服务:点击启动服务按钮,输入启动参数。
|
|
|
|
|
```
|
|
|
|
|
<p align="center">
|
|
|
|
|
<img src="https://user-images.githubusercontent.com/22424850/211709324-b07bb303-ced2-4137-9df7-0d2574ba84c8.gif" width="100%"/>
|
|
|
|
|
</p>
|
|
|
|
|
|
|
|
|
|
## 7. 常见问题
|
|
|
|
|
- [如何编写客户端 HTTP/GRPC 请求](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/client.md)
|
|
|
|
|
- [如何编译服务化部署镜像](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/compile.md)
|
|
|
|
|
- [服务化部署原理及动态Batch介绍](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/demo.md)
|
|
|
|
|
- [模型仓库介绍](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/model_repository.md)
|