You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

85 lines
2.7 KiB
Python

8 months ago
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import yaml
import argparse
from rknn.api import RKNN
def get_config():
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", default=True, help="rknntoolkit verbose")
parser.add_argument("--config_path")
parser.add_argument("--target_platform")
args = parser.parse_args()
return args
if __name__ == "__main__":
config = get_config()
with open(config.config_path) as file:
file_data = file.read()
yaml_config = yaml.safe_load(file_data)
print(yaml_config)
model = RKNN(config.verbose)
# Config
mean_values = yaml_config["mean"]
std_values = yaml_config["std"]
model.config(
mean_values=mean_values,
std_values=std_values,
target_platform=config.target_platform,
)
# Load ONNX model
if yaml_config["outputs_nodes"] is None:
ret = model.load_onnx(model=yaml_config["model_path"])
else:
ret = model.load_onnx(
model=yaml_config["model_path"], outputs=yaml_config["outputs_nodes"]
)
assert ret == 0, "Load model failed!"
# Build model
ret = model.build(
do_quantization=yaml_config["do_quantization"], dataset=yaml_config["dataset"]
)
assert ret == 0, "Build model failed!"
# Init Runtime
ret = model.init_runtime()
assert ret == 0, "Init runtime environment failed!"
# Export
if not os.path.exists(yaml_config["output_folder"]):
os.mkdir(yaml_config["output_folder"])
name_list = os.path.basename(yaml_config["model_path"]).split(".")
model_base_name = ""
for name in name_list[0:-1]:
model_base_name += name
model_device_name = config.target_platform.lower()
if yaml_config["do_quantization"]:
model_save_name = (
model_base_name + "_" + model_device_name + "_quantized" + ".rknn"
)
else:
model_save_name = (
model_base_name + "_" + model_device_name + "_unquantized" + ".rknn"
)
ret = model.export_rknn(os.path.join(yaml_config["output_folder"], model_save_name))
assert ret == 0, "Export rknn model failed!"
print("Export OK!")