You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
3.8 KiB
C++
107 lines
3.8 KiB
C++
8 months ago
|
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
// reference from :
|
||
|
// https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/python/custom-operator/custom_relu_op.cc
|
||
|
#include <iostream>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "paddle/extension.h"
|
||
|
|
||
|
template <typename data_t>
|
||
|
void relu_cpu_forward_kernel(const data_t *x_data, data_t *out_data,
|
||
|
int64_t x_numel) {
|
||
|
for (int i = 0; i < x_numel; ++i) {
|
||
|
out_data[i] = std::max(static_cast<data_t>(0.), x_data[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename data_t>
|
||
|
void relu_cpu_backward_kernel(const data_t *grad_out_data,
|
||
|
const data_t *out_data, data_t *grad_x_data,
|
||
|
int64_t out_numel) {
|
||
|
for (int i = 0; i < out_numel; ++i) {
|
||
|
grad_x_data[i] =
|
||
|
grad_out_data[i] * (out_data[i] > static_cast<data_t>(0) ? 1. : 0.);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor &x) {
|
||
|
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
|
||
|
|
||
|
out.reshape(x.shape());
|
||
|
PD_DISPATCH_FLOATING_TYPES(
|
||
|
x.type(), "relu_cpu_forward", ([&] {
|
||
|
relu_cpu_forward_kernel<data_t>(
|
||
|
x.data<data_t>(), out.mutable_data<data_t>(x.place()), x.size());
|
||
|
}));
|
||
|
|
||
|
return {out};
|
||
|
}
|
||
|
|
||
|
std::vector<paddle::Tensor> relu_cpu_backward(const paddle::Tensor &x,
|
||
|
const paddle::Tensor &out,
|
||
|
const paddle::Tensor &grad_out) {
|
||
|
auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU);
|
||
|
grad_x.reshape(x.shape());
|
||
|
|
||
|
PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] {
|
||
|
relu_cpu_backward_kernel<data_t>(
|
||
|
grad_out.data<data_t>(), out.data<data_t>(),
|
||
|
grad_x.mutable_data<data_t>(x.place()),
|
||
|
out.size());
|
||
|
}));
|
||
|
|
||
|
return {grad_x};
|
||
|
}
|
||
|
|
||
|
std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor &x);
|
||
|
std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor &x,
|
||
|
const paddle::Tensor &out,
|
||
|
const paddle::Tensor &grad_out);
|
||
|
|
||
|
std::vector<paddle::Tensor> ReluForward(const paddle::Tensor &x) {
|
||
|
// TODO(chenweihang): Check Input
|
||
|
if (x.place() == paddle::PlaceType::kCPU) {
|
||
|
return relu_cpu_forward(x);
|
||
|
} else if (x.place() == paddle::PlaceType::kGPU) {
|
||
|
return relu_cuda_forward(x);
|
||
|
} else {
|
||
|
throw std::runtime_error("Not implemented.");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor &x,
|
||
|
const paddle::Tensor &out,
|
||
|
const paddle::Tensor &grad_out) {
|
||
|
// TODO(chenweihang): Check Input
|
||
|
if (x.place() == paddle::PlaceType::kCPU) {
|
||
|
return relu_cpu_backward(x, out, grad_out);
|
||
|
} else if (x.place() == paddle::PlaceType::kGPU) {
|
||
|
return relu_cuda_backward(x, out, grad_out);
|
||
|
} else {
|
||
|
throw std::runtime_error("Not implemented.");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
PD_BUILD_OP(custom_relu)
|
||
|
.Inputs({"X"})
|
||
|
.Outputs({"Out"})
|
||
|
.SetKernelFn(PD_KERNEL(ReluForward));
|
||
|
|
||
|
PD_BUILD_GRAD_OP(custom_relu)
|
||
|
.Inputs({"X", "Out", paddle::Grad("Out")})
|
||
|
.Outputs({paddle::Grad("X")})
|
||
|
.SetKernelFn(PD_KERNEL(ReluBackward));
|