You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
37 lines
1.2 KiB
Python
37 lines
1.2 KiB
Python
8 months ago
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
|
||
|
|
||
|
class SARLoss(nn.Layer):
|
||
|
def __init__(self, **kwargs):
|
||
|
super(SARLoss, self).__init__()
|
||
|
ignore_index = kwargs.get("ignore_index", 92) # 6626
|
||
|
self.loss_func = paddle.nn.loss.CrossEntropyLoss(
|
||
|
reduction="mean", ignore_index=ignore_index
|
||
|
)
|
||
|
|
||
|
def forward(self, predicts, batch):
|
||
|
predict = predicts[
|
||
|
:, :-1, :
|
||
|
] # ignore last index of outputs to be in same seq_len with targets
|
||
|
label = batch[1].astype("int64")[
|
||
|
:, 1:
|
||
|
] # ignore first index of target in loss calculation
|
||
|
batch_size, num_steps, num_classes = (
|
||
|
predict.shape[0],
|
||
|
predict.shape[1],
|
||
|
predict.shape[2],
|
||
|
)
|
||
|
assert (
|
||
|
len(label.shape) == len(list(predict.shape)) - 1
|
||
|
), "The target's shape and inputs's shape is [N, d] and [N, num_steps]"
|
||
|
|
||
|
inputs = paddle.reshape(predict, [-1, num_classes])
|
||
|
targets = paddle.reshape(label, [-1])
|
||
|
loss = self.loss_func(inputs, targets)
|
||
|
return {"loss": loss}
|