You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
5.5 KiB
Python
159 lines
5.5 KiB
Python
8 months ago
|
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
This code is refer from:
|
||
|
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
|
||
|
"""
|
||
|
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
from paddle.nn import functional as F
|
||
|
import numpy as np
|
||
|
from ppocr.utils.iou import iou
|
||
|
|
||
|
|
||
|
class PSELoss(nn.Layer):
|
||
|
def __init__(
|
||
|
self,
|
||
|
alpha,
|
||
|
ohem_ratio=3,
|
||
|
kernel_sample_mask="pred",
|
||
|
reduction="sum",
|
||
|
eps=1e-6,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""Implement PSE Loss."""
|
||
|
super(PSELoss, self).__init__()
|
||
|
assert reduction in ["sum", "mean", "none"]
|
||
|
self.alpha = alpha
|
||
|
self.ohem_ratio = ohem_ratio
|
||
|
self.kernel_sample_mask = kernel_sample_mask
|
||
|
self.reduction = reduction
|
||
|
self.eps = eps
|
||
|
|
||
|
def forward(self, outputs, labels):
|
||
|
predicts = outputs["maps"]
|
||
|
predicts = F.interpolate(predicts, scale_factor=4)
|
||
|
|
||
|
texts = predicts[:, 0, :, :]
|
||
|
kernels = predicts[:, 1:, :, :]
|
||
|
gt_texts, gt_kernels, training_masks = labels[1:]
|
||
|
|
||
|
# text loss
|
||
|
selected_masks = self.ohem_batch(texts, gt_texts, training_masks)
|
||
|
|
||
|
loss_text = self.dice_loss(texts, gt_texts, selected_masks)
|
||
|
iou_text = iou(
|
||
|
(texts > 0).astype("int64"), gt_texts, training_masks, reduce=False
|
||
|
)
|
||
|
losses = dict(loss_text=loss_text, iou_text=iou_text)
|
||
|
|
||
|
# kernel loss
|
||
|
loss_kernels = []
|
||
|
if self.kernel_sample_mask == "gt":
|
||
|
selected_masks = gt_texts * training_masks
|
||
|
elif self.kernel_sample_mask == "pred":
|
||
|
selected_masks = (F.sigmoid(texts) > 0.5).astype("float32") * training_masks
|
||
|
|
||
|
for i in range(kernels.shape[1]):
|
||
|
kernel_i = kernels[:, i, :, :]
|
||
|
gt_kernel_i = gt_kernels[:, i, :, :]
|
||
|
loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i, selected_masks)
|
||
|
loss_kernels.append(loss_kernel_i)
|
||
|
loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
|
||
|
iou_kernel = iou(
|
||
|
(kernels[:, -1, :, :] > 0).astype("int64"),
|
||
|
gt_kernels[:, -1, :, :],
|
||
|
training_masks * gt_texts,
|
||
|
reduce=False,
|
||
|
)
|
||
|
losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel))
|
||
|
loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
|
||
|
losses["loss"] = loss
|
||
|
if self.reduction == "sum":
|
||
|
losses = {x: paddle.sum(v) for x, v in losses.items()}
|
||
|
elif self.reduction == "mean":
|
||
|
losses = {x: paddle.mean(v) for x, v in losses.items()}
|
||
|
return losses
|
||
|
|
||
|
def dice_loss(self, input, target, mask):
|
||
|
input = F.sigmoid(input)
|
||
|
|
||
|
input = input.reshape([input.shape[0], -1])
|
||
|
target = target.reshape([target.shape[0], -1])
|
||
|
mask = mask.reshape([mask.shape[0], -1])
|
||
|
|
||
|
input = input * mask
|
||
|
target = target * mask
|
||
|
|
||
|
a = paddle.sum(input * target, 1)
|
||
|
b = paddle.sum(input * input, 1) + self.eps
|
||
|
c = paddle.sum(target * target, 1) + self.eps
|
||
|
d = (2 * a) / (b + c)
|
||
|
return 1 - d
|
||
|
|
||
|
def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
|
||
|
pos_num = int(paddle.sum((gt_text > 0.5).astype("float32"))) - int(
|
||
|
paddle.sum(
|
||
|
paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5)).astype(
|
||
|
"float32"
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
if pos_num == 0:
|
||
|
selected_mask = training_mask
|
||
|
selected_mask = selected_mask.reshape(
|
||
|
[1, selected_mask.shape[0], selected_mask.shape[1]]
|
||
|
).astype("float32")
|
||
|
return selected_mask
|
||
|
|
||
|
neg_num = int(paddle.sum((gt_text <= 0.5).astype("float32")))
|
||
|
neg_num = int(min(pos_num * ohem_ratio, neg_num))
|
||
|
|
||
|
if neg_num == 0:
|
||
|
selected_mask = training_mask
|
||
|
selected_mask = selected_mask.reshape(
|
||
|
[1, selected_mask.shape[0], selected_mask.shape[1]]
|
||
|
).astype("float32")
|
||
|
return selected_mask
|
||
|
|
||
|
neg_score = paddle.masked_select(score, gt_text <= 0.5)
|
||
|
neg_score_sorted = paddle.sort(-neg_score)
|
||
|
threshold = -neg_score_sorted[neg_num - 1]
|
||
|
|
||
|
selected_mask = paddle.logical_and(
|
||
|
paddle.logical_or((score >= threshold), (gt_text > 0.5)),
|
||
|
(training_mask > 0.5),
|
||
|
)
|
||
|
selected_mask = selected_mask.reshape(
|
||
|
[1, selected_mask.shape[0], selected_mask.shape[1]]
|
||
|
).astype("float32")
|
||
|
return selected_mask
|
||
|
|
||
|
def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
|
||
|
selected_masks = []
|
||
|
for i in range(scores.shape[0]):
|
||
|
selected_masks.append(
|
||
|
self.ohem_single(
|
||
|
scores[i, :, :],
|
||
|
gt_texts[i, :, :],
|
||
|
training_masks[i, :, :],
|
||
|
ohem_ratio,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
selected_masks = paddle.concat(selected_masks, 0).astype("float32")
|
||
|
return selected_masks
|