|
|
|
|
# Text Telescope
|
|
|
|
|
|
|
|
|
|
- [1. 算法简介](#1)
|
|
|
|
|
- [2. 环境配置](#2)
|
|
|
|
|
- [3. 模型训练、评估、预测](#3)
|
|
|
|
|
- [3.1 训练](#3-1)
|
|
|
|
|
- [3.2 评估](#3-2)
|
|
|
|
|
- [3.3 预测](#3-3)
|
|
|
|
|
- [4. 推理部署](#4)
|
|
|
|
|
- [4.1 Python推理](#4-1)
|
|
|
|
|
- [4.2 C++推理](#4-2)
|
|
|
|
|
- [4.3 Serving服务化部署](#4-3)
|
|
|
|
|
- [4.4 更多推理部署](#4-4)
|
|
|
|
|
- [5. FAQ](#5)
|
|
|
|
|
|
|
|
|
|
<a name="1"></a>
|
|
|
|
|
## 1. 算法简介
|
|
|
|
|
|
|
|
|
|
论文信息:
|
|
|
|
|
> [Scene Text Telescope: Text-Focused Scene Image Super-Resolution](https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_Scene_Text_Telescope_Text-Focused_Scene_Image_Super-Resolution_CVPR_2021_paper.pdf)
|
|
|
|
|
|
|
|
|
|
> Chen, Jingye, Bin Li, and Xiangyang Xue
|
|
|
|
|
|
|
|
|
|
> CVPR, 2021
|
|
|
|
|
|
|
|
|
|
参考[FudanOCR](https://github.com/FudanVI/FudanOCR/tree/main/scene-text-telescope) 数据下载说明,在TextZoom测试集合上超分算法效果如下:
|
|
|
|
|
|
|
|
|
|
|模型|骨干网络|PSNR_Avg|SSIM_Avg|配置文件|下载链接|
|
|
|
|
|
|---|---|---|---|---|---|
|
|
|
|
|
|Text Telescope|tbsrn|21.56|0.7411| [configs/sr/sr_telescope.yml](../../configs/sr/sr_telescope.yml)|[训练模型](https://paddleocr.bj.bcebos.com/contribution/sr_telescope_train.tar)|
|
|
|
|
|
|
|
|
|
|
[TextZoom数据集](https://paddleocr.bj.bcebos.com/dataset/TextZoom.tar) 来自两个超分数据集RealSR和SR-RAW,两个数据集都包含LR-HR对,TextZoom有17367对训数据和4373对测试数据。
|
|
|
|
|
|
|
|
|
|
<a name="2"></a>
|
|
|
|
|
## 2. 环境配置
|
|
|
|
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="3"></a>
|
|
|
|
|
## 3. 模型训练、评估、预测
|
|
|
|
|
|
|
|
|
|
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
|
|
|
|
|
|
|
|
|
- 训练
|
|
|
|
|
|
|
|
|
|
在完成数据准备后,便可以启动训练,训练命令如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
#单卡训练(训练周期长,不建议)
|
|
|
|
|
python3 tools/train.py -c configs/sr/sr_telescope.yml
|
|
|
|
|
|
|
|
|
|
#多卡训练,通过--gpus参数指定卡号
|
|
|
|
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/sr/sr_telescope.yml
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 评估
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# GPU 评估, Global.pretrained_model 为待测权重
|
|
|
|
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 预测:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# 预测使用的配置文件必须与训练一致
|
|
|
|
|
python3 tools/infer_sr.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_52.png
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
执行命令后,上面图像的超分结果如下:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
<a name="4"></a>
|
|
|
|
|
## 4. 推理部署
|
|
|
|
|
|
|
|
|
|
<a name="4-1"></a>
|
|
|
|
|
### 4.1 Python推理
|
|
|
|
|
|
|
|
|
|
首先将文本超分训练过程中保存的模型,转换成inference model。以 Text-Telescope 训练的[模型](https://paddleocr.bj.bcebos.com/contribution/Telescope_train.tar.gz) 为例,可以使用如下命令进行转换:
|
|
|
|
|
```shell
|
|
|
|
|
python3 tools/export_model.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/sr_out
|
|
|
|
|
```
|
|
|
|
|
Text-Telescope 文本超分模型推理,可以执行如下命令:
|
|
|
|
|
```
|
|
|
|
|
python3 tools/infer/predict_sr.py --sr_model_dir=./inference/sr_out --image_dir=doc/imgs_words_en/word_52.png --sr_image_shape=3,32,128
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
执行命令后,图像的超分结果如下:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
<a name="4-2"></a>
|
|
|
|
|
### 4.2 C++推理
|
|
|
|
|
|
|
|
|
|
暂未支持
|
|
|
|
|
|
|
|
|
|
<a name="4-3"></a>
|
|
|
|
|
### 4.3 Serving服务化部署
|
|
|
|
|
|
|
|
|
|
暂未支持
|
|
|
|
|
|
|
|
|
|
<a name="4-4"></a>
|
|
|
|
|
### 4.4 更多推理部署
|
|
|
|
|
|
|
|
|
|
暂未支持
|
|
|
|
|
|
|
|
|
|
<a name="5"></a>
|
|
|
|
|
## 5. FAQ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 引用
|
|
|
|
|
|
|
|
|
|
```bibtex
|
|
|
|
|
@INPROCEEDINGS{9578891,
|
|
|
|
|
author={Chen, Jingye and Li, Bin and Xue, Xiangyang},
|
|
|
|
|
booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
|
|
|
|
title={Scene Text Telescope: Text-Focused Scene Image Super-Resolution},
|
|
|
|
|
year={2021},
|
|
|
|
|
volume={},
|
|
|
|
|
number={},
|
|
|
|
|
pages={12021-12030},
|
|
|
|
|
doi={10.1109/CVPR46437.2021.01185}}
|
|
|
|
|
```
|