|
|
|
|
# SEED
|
|
|
|
|
|
|
|
|
|
- [1. 算法简介](#1)
|
|
|
|
|
- [2. 环境配置](#2)
|
|
|
|
|
- [3. 模型训练、评估、预测](#3)
|
|
|
|
|
- [3.1 训练](#3-1)
|
|
|
|
|
- [3.2 评估](#3-2)
|
|
|
|
|
- [3.3 预测](#3-3)
|
|
|
|
|
- [4. 推理部署](#4)
|
|
|
|
|
- [4.1 Python推理](#4-1)
|
|
|
|
|
- [4.2 C++推理](#4-2)
|
|
|
|
|
- [4.3 Serving服务化部署](#4-3)
|
|
|
|
|
- [4.4 更多推理部署](#4-4)
|
|
|
|
|
- [5. FAQ](#5)
|
|
|
|
|
|
|
|
|
|
<a name="1"></a>
|
|
|
|
|
## 1. 算法简介
|
|
|
|
|
|
|
|
|
|
论文信息:
|
|
|
|
|
> [SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition](https://arxiv.org/pdf/2005.10977.pdf)
|
|
|
|
|
|
|
|
|
|
> Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping
|
|
|
|
|
|
|
|
|
|
> CVPR, 2020
|
|
|
|
|
|
|
|
|
|
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
|
|
|
|
|
|
|
|
|
|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
|
|
|
|
|
|---|---|---|---|---|
|
|
|
|
|
|SEED|Aster_Resnet| 85.20% | [configs/rec/rec_resnet_stn_bilstm_att.yml](../../configs/rec/rec_resnet_stn_bilstm_att.yml) | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
|
|
|
|
|
|
|
|
|
|
<a name="2"></a>
|
|
|
|
|
## 2. 环境配置
|
|
|
|
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="3"></a>
|
|
|
|
|
## 3. 模型训练、评估、预测
|
|
|
|
|
|
|
|
|
|
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
|
|
|
|
|
|
|
|
|
- 训练
|
|
|
|
|
|
|
|
|
|
SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz) ,并且安装 fasttext 依赖:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
python3 -m pip install fasttext==0.9.1
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
然后,在完成数据准备后,便可以启动训练,训练命令如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
#单卡训练(训练周期长,不建议)
|
|
|
|
|
python3 tools/train.py -c configs/rec/rec_resnet_stn_bilstm_att.yml
|
|
|
|
|
|
|
|
|
|
#多卡训练,通过--gpus参数指定卡号
|
|
|
|
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_resnet_stn_bilstm_att.yml
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 评估
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# GPU 评估, Global.pretrained_model 为待测权重
|
|
|
|
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 预测:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# 预测使用的配置文件必须与训练一致
|
|
|
|
|
python3 tools/infer_rec.py -c configs/rec/rec_resnet_stn_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
<a name="4"></a>
|
|
|
|
|
## 4. 推理部署
|
|
|
|
|
|
|
|
|
|
<a name="4-1"></a>
|
|
|
|
|
### 4.1 Python推理
|
|
|
|
|
|
|
|
|
|
coming soon
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="4-2"></a>
|
|
|
|
|
### 4.2 C++推理
|
|
|
|
|
|
|
|
|
|
coming soon
|
|
|
|
|
|
|
|
|
|
<a name="4-3"></a>
|
|
|
|
|
### 4.3 Serving服务化部署
|
|
|
|
|
|
|
|
|
|
coming soon
|
|
|
|
|
|
|
|
|
|
<a name="4-4"></a>
|
|
|
|
|
### 4.4 更多推理部署
|
|
|
|
|
|
|
|
|
|
coming soon
|
|
|
|
|
|
|
|
|
|
<a name="5"></a>
|
|
|
|
|
## 5. FAQ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 引用
|
|
|
|
|
|
|
|
|
|
```bibtex
|
|
|
|
|
@inproceedings{qiao2020seed,
|
|
|
|
|
title={Seed: Semantics enhanced encoder-decoder framework for scene text recognition},
|
|
|
|
|
author={Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping},
|
|
|
|
|
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
|
|
|
|
pages={13528--13537},
|
|
|
|
|
year={2020}
|
|
|
|
|
}
|
|
|
|
|
```
|