You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
9.6 KiB
Python
256 lines
9.6 KiB
Python
###############################################################################
|
|
# Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking
|
|
# email: lipku@foxmail.com
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
###############################################################################
|
|
|
|
import math
|
|
import torch
|
|
import numpy as np
|
|
|
|
#from .utils import *
|
|
import os
|
|
import time
|
|
import cv2
|
|
import glob
|
|
import pickle
|
|
import copy
|
|
|
|
import queue
|
|
from queue import Queue
|
|
from threading import Thread, Event
|
|
import torch.multiprocessing as mp
|
|
|
|
|
|
from lipasr import LipASR
|
|
import asyncio
|
|
from av import AudioFrame, VideoFrame
|
|
from wav2lip.models384.wav2lip import Wav2Lip
|
|
from basereal import BaseReal
|
|
|
|
#from imgcache import ImgCache
|
|
|
|
from tqdm import tqdm
|
|
from logger import logger
|
|
|
|
device = "cuda" if torch.cuda.is_available() else ("mps" if (hasattr(torch.backends, "mps") and torch.backends.mps.is_available()) else "cpu")
|
|
print('Using {} for inference.'.format(device))
|
|
|
|
def _load(checkpoint_path):
|
|
if device == 'cuda':
|
|
checkpoint = torch.load(checkpoint_path) #,weights_only=True
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path,
|
|
map_location=lambda storage, loc: storage)
|
|
return checkpoint
|
|
|
|
def load_model(path):
|
|
model = Wav2Lip()
|
|
logger.info("Load checkpoint from: {}".format(path))
|
|
checkpoint = _load(path)
|
|
s = checkpoint["state_dict"]
|
|
new_s = {}
|
|
for k, v in s.items():
|
|
new_s[k.replace('module.', '')] = v
|
|
model.load_state_dict(new_s)
|
|
|
|
model = model.to(device)
|
|
return model.eval()
|
|
|
|
def load_avatar(avatar_id):
|
|
avatar_path = f"./data/avatars/{avatar_id}"
|
|
full_imgs_path = f"{avatar_path}/full_imgs"
|
|
face_imgs_path = f"{avatar_path}/face_imgs"
|
|
coords_path = f"{avatar_path}/coords.pkl"
|
|
|
|
with open(coords_path, 'rb') as f:
|
|
coord_list_cycle = pickle.load(f)
|
|
input_img_list = glob.glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
frame_list_cycle = read_imgs(input_img_list)
|
|
#self.imagecache = ImgCache(len(self.coord_list_cycle),self.full_imgs_path,1000)
|
|
input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
|
input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
face_list_cycle = read_imgs(input_face_list)
|
|
|
|
return frame_list_cycle,face_list_cycle,coord_list_cycle
|
|
|
|
@torch.no_grad()
|
|
def warm_up(batch_size,model,modelres):
|
|
# 预热函数
|
|
logger.info('warmup model...')
|
|
img_batch = torch.ones(batch_size, 6, modelres, modelres).to(device)
|
|
mel_batch = torch.ones(batch_size, 1, 80, 16).to(device)
|
|
model(mel_batch, img_batch)
|
|
|
|
def read_imgs(img_list):
|
|
frames = []
|
|
logger.info('reading images...')
|
|
for img_path in tqdm(img_list):
|
|
frame = cv2.imread(img_path)
|
|
frames.append(frame)
|
|
return frames
|
|
|
|
def __mirror_index(size, index):
|
|
#size = len(self.coord_list_cycle)
|
|
turn = index // size
|
|
res = index % size
|
|
if turn % 2 == 0:
|
|
return res
|
|
else:
|
|
return size - res - 1
|
|
|
|
def inference(quit_event,batch_size,face_list_cycle,audio_feat_queue,audio_out_queue,res_frame_queue,model):
|
|
|
|
#model = load_model("./models/wav2lip.pth")
|
|
# input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
|
# input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
# face_list_cycle = read_imgs(input_face_list)
|
|
|
|
#input_latent_list_cycle = torch.load(latents_out_path)
|
|
length = len(face_list_cycle)
|
|
index = 0
|
|
count=0
|
|
counttime=0
|
|
logger.info('start inference')
|
|
while not quit_event.is_set():
|
|
starttime=time.perf_counter()
|
|
mel_batch = []
|
|
try:
|
|
mel_batch = audio_feat_queue.get(block=True, timeout=1)
|
|
except queue.Empty:
|
|
continue
|
|
|
|
is_all_silence=True
|
|
audio_frames = []
|
|
for _ in range(batch_size*2):
|
|
frame,type,eventpoint = audio_out_queue.get()
|
|
audio_frames.append((frame,type,eventpoint))
|
|
if type==0:
|
|
is_all_silence=False
|
|
|
|
if is_all_silence:
|
|
for i in range(batch_size):
|
|
res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
|
index = index + 1
|
|
else:
|
|
# print('infer=======')
|
|
t=time.perf_counter()
|
|
img_batch = []
|
|
for i in range(batch_size):
|
|
idx = __mirror_index(length,index+i)
|
|
face = face_list_cycle[idx]
|
|
img_batch.append(face)
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, face.shape[0]//2:] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, img_batch)
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
|
|
counttime += (time.perf_counter() - t)
|
|
count += batch_size
|
|
#_totalframe += 1
|
|
if count>=100:
|
|
logger.info(f"------actual avg infer fps:{count/counttime:.4f}")
|
|
count=0
|
|
counttime=0
|
|
for i,res_frame in enumerate(pred):
|
|
#self.__pushmedia(res_frame,loop,audio_track,video_track)
|
|
res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
|
index = index + 1
|
|
#print('total batch time:',time.perf_counter()-starttime)
|
|
logger.info('lipreal inference processor stop')
|
|
|
|
class LipReal(BaseReal):
|
|
@torch.no_grad()
|
|
def __init__(self, opt, model, avatar):
|
|
super().__init__(opt)
|
|
#self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
|
|
# self.W = opt.W
|
|
# self.H = opt.H
|
|
|
|
self.fps = opt.fps # 20 ms per frame
|
|
|
|
self.batch_size = opt.batch_size
|
|
self.idx = 0
|
|
self.res_frame_queue = Queue(self.batch_size*2) #mp.Queue
|
|
#self.__loadavatar()
|
|
self.model = model
|
|
self.frame_list_cycle,self.face_list_cycle,self.coord_list_cycle = avatar
|
|
|
|
self.asr = LipASR(opt,self)
|
|
self.asr.warm_up()
|
|
|
|
self.render_event = mp.Event()
|
|
|
|
def __del__(self):
|
|
logger.info(f'lipreal({self.sessionid}) delete')
|
|
|
|
def paste_back_frame(self,pred_frame,idx:int):
|
|
bbox = self.coord_list_cycle[idx]
|
|
combine_frame = copy.deepcopy(self.frame_list_cycle[idx])
|
|
#combine_frame = copy.deepcopy(self.imagecache.get_img(idx))
|
|
y1, y2, x1, x2 = bbox
|
|
res_frame = cv2.resize(pred_frame.astype(np.uint8),(x2-x1,y2-y1))
|
|
#combine_frame = get_image(ori_frame,res_frame,bbox)
|
|
#t=time.perf_counter()
|
|
combine_frame[y1:y2, x1:x2] = res_frame
|
|
return combine_frame
|
|
|
|
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
|
|
#if self.opt.asr:
|
|
# self.asr.warm_up()
|
|
|
|
self.tts.render(quit_event)
|
|
self.init_customindex()
|
|
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
|
|
process_thread.start()
|
|
|
|
Thread(target=inference, args=(quit_event,self.batch_size,self.face_list_cycle,
|
|
self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue,
|
|
self.model,)).start() #mp.Process
|
|
|
|
#self.render_event.set() #start infer process render
|
|
count=0
|
|
totaltime=0
|
|
_starttime=time.perf_counter()
|
|
#_totalframe=0
|
|
while not quit_event.is_set():
|
|
# update texture every frame
|
|
# audio stream thread...
|
|
t = time.perf_counter()
|
|
self.asr.run_step()
|
|
|
|
# if video_track._queue.qsize()>=2*self.opt.batch_size:
|
|
# print('sleep qsize=',video_track._queue.qsize())
|
|
# time.sleep(0.04*video_track._queue.qsize()*0.8)
|
|
if video_track and video_track._queue.qsize()>=5:
|
|
logger.debug('sleep qsize=%d',video_track._queue.qsize())
|
|
time.sleep(0.04*video_track._queue.qsize()*0.8)
|
|
|
|
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
|
|
# if delay > 0:
|
|
# time.sleep(delay)
|
|
#self.render_event.clear() #end infer process render
|
|
logger.info('lipreal thread stop')
|
|
|