You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
9.5 KiB
Python
199 lines
9.5 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from .conv_384 import Conv2dTranspose, Conv2d, nonorm_Conv2d
|
|
|
|
|
|
class SpatialAttention(nn.Module):
|
|
def __init__(self, kernel_size=7):
|
|
super(SpatialAttention, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size // 2, bias=False)
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
avg_out = torch.mean(x, dim=1, keepdim=True)
|
|
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
|
x = torch.cat([avg_out, max_out], dim=1)
|
|
x = self.conv1(x)
|
|
return self.sigmoid(x)
|
|
|
|
|
|
class SAM(nn.Module):
|
|
def __init__(self):
|
|
super(SAM, self).__init__()
|
|
self.sa = SpatialAttention()
|
|
|
|
def forward(self, sp, se):
|
|
sp_att = self.sa(sp)
|
|
out = se * sp_att + se
|
|
return out
|
|
|
|
|
|
class Wav2Lip(nn.Module):
|
|
def __init__(self, audio_encoder=None):
|
|
super(Wav2Lip, self).__init__()
|
|
self.sam = SAM()
|
|
self.face_encoder_blocks = nn.ModuleList([
|
|
nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3),
|
|
Conv2d(16, 16, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(16, 16, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(16, 16, kernel_size=3, stride=1, padding=1, residual=True)), # 192, 192
|
|
|
|
nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1), # 96, 96
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1), # 48, 48
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1), # 24, 24
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1), # 12, 12
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 6, 6
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(512, 1024, kernel_size=3, stride=2, padding=1), # 3, 3
|
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True)),
|
|
|
|
nn.Sequential(Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0), # 1, 1
|
|
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0),
|
|
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)), ])
|
|
|
|
|
|
if audio_encoder is None:
|
|
self.audio_encoder = nn.Sequential(
|
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
|
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(512, 1024, kernel_size=3, stride=1, padding=0),
|
|
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0))
|
|
|
|
else:
|
|
self.audio_encoder = audio_encoder
|
|
|
|
for p in self.audio_encoder.parameters():
|
|
p.requires_grad = False
|
|
|
|
self.audio_refine = nn.Sequential(
|
|
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0),
|
|
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0))
|
|
|
|
self.face_decoder_blocks = nn.ModuleList([
|
|
nn.Sequential(Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0), ), # + 1024
|
|
|
|
|
|
nn.Sequential(Conv2dTranspose(2048, 1024, kernel_size=3, stride=1, padding=0), # 3,3
|
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True), ), # + 1024
|
|
|
|
nn.Sequential(Conv2dTranspose(2048, 1024, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True), ), # 6, 6 + 512
|
|
|
|
nn.Sequential(Conv2dTranspose(1536, 768, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(768, 768, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(768, 768, kernel_size=3, stride=1, padding=1, residual=True), ), # 12, 12 + 256
|
|
|
|
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ), # 24, 24 + 128
|
|
|
|
|
|
nn.Sequential(Conv2dTranspose(640, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), ), # 48, 48 + 64
|
|
|
|
nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), ), # 96, 96 + 32
|
|
|
|
nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), ), ]) # 192, 192 + 16
|
|
|
|
self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
|
|
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
|
|
nn.Sigmoid())
|
|
|
|
def freeze_audio_encoder(self):
|
|
for p in self.audio_encoder.parameters():
|
|
p.requires_grad = False
|
|
|
|
def forward(self, audio_sequences, face_sequences):
|
|
|
|
B = audio_sequences.size(0)
|
|
|
|
input_dim_size = len(face_sequences.size())
|
|
if input_dim_size > 4:
|
|
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
|
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
|
|
|
|
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
|
|
|
|
|
|
|
|
feats = []
|
|
x = face_sequences
|
|
|
|
for f in self.face_encoder_blocks:
|
|
x = f(x)
|
|
feats.append(x)
|
|
|
|
x = audio_embedding
|
|
for f in self.face_decoder_blocks:
|
|
x = f(x)
|
|
try:
|
|
x = self.sam(feats[-1], x)
|
|
x = torch.cat((x, feats[-1]), dim=1)
|
|
except Exception as e:
|
|
print(x.size())
|
|
print(feats[-1].size())
|
|
raise e
|
|
|
|
feats.pop()
|
|
|
|
x = self.output_block(x)
|
|
|
|
if input_dim_size > 4:
|
|
x = torch.split(x, B, dim=0) # [(B, C, H, W)]
|
|
outputs = torch.stack(x, dim=2) # (B, C, T, H, W)
|
|
|
|
else:
|
|
outputs = x
|
|
|
|
return outputs
|
|
|