You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

552 lines
24 KiB
Python

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

###############################################################################
# Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking
# email: lipku@foxmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
# server.py
from flask import Flask, render_template,send_from_directory,request, jsonify
from flask_sockets import Sockets
import base64
import time
import json
#import gevent
#from gevent import pywsgi
#from geventwebsocket.handler import WebSocketHandler
import os
import re
import numpy as np
from threading import Thread,Event
#import multiprocessing
import torch.multiprocessing as mp
from aiohttp import web
import aiohttp
import aiohttp_cors
from aiortc import RTCPeerConnection, RTCSessionDescription
from aiortc.rtcrtpsender import RTCRtpSender
from webrtc import HumanPlayer
import argparse
import random
import shutil
import asyncio
import torch
app = Flask(__name__)
#sockets = Sockets(app)
nerfreals = {}
opt = None
model = None
avatar = None
# def llm_response(message):
# from llm.LLM import LLM
# # llm = LLM().init_model('Gemini', model_path= 'gemini-pro',api_key='Your API Key', proxy_url=None)
# # llm = LLM().init_model('ChatGPT', model_path= 'gpt-3.5-turbo',api_key='Your API Key')
# llm = LLM().init_model('VllmGPT', model_path= 'THUDM/chatglm3-6b')
# response = llm.chat(message)
# print(response)
# return response
def llm_response(message,nerfreal):
start = time.perf_counter()
from openai import OpenAI
client = OpenAI(
# 如果您没有配置环境变量请在此处用您的API Key进行替换
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 填写DashScope SDK的base_url
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
end = time.perf_counter()
print(f"llm Time init: {end-start}s")
completion = client.chat.completions.create(
model="qwen-plus",
messages=[{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': message}],
stream=True,
# 通过以下设置在流式输出的最后一行展示token使用信息
stream_options={"include_usage": True}
)
result=""
first = True
for chunk in completion:
if len(chunk.choices)>0:
#print(chunk.choices[0].delta.content)
if first:
end = time.perf_counter()
print(f"llm Time to first chunk: {end-start}s")
first = False
msg = chunk.choices[0].delta.content
lastpos=0
#msglist = re.split('[,.!;:,。!?]',msg)
for i, char in enumerate(msg):
if char in ",.!;:,。!?:;" :
result = result+msg[lastpos:i+1]
lastpos = i+1
if len(result)>10:
print(result)
nerfreal.put_msg_txt(result)
result=""
result = result+msg[lastpos:]
end = time.perf_counter()
print(f"llm Time to last chunk: {end-start}s")
nerfreal.put_msg_txt(result)
#####webrtc###############################
pcs = set()
def randN(N):
'''生成长度为 N的随机数 '''
min = pow(10, N - 1)
max = pow(10, N)
return random.randint(min, max - 1)
def build_nerfreal(sessionid):
opt.sessionid=sessionid
if opt.model == 'wav2lip':
from lipreal import LipReal
nerfreal = LipReal(opt,model,avatar)
elif opt.model == 'musetalk':
from musereal import MuseReal
nerfreal = MuseReal(opt,model,avatar)
elif opt.model == 'ernerf':
from nerfreal import NeRFReal
nerfreal = NeRFReal(opt,model,avatar)
elif opt.model == 'ultralight':
from lightreal import LightReal
nerfreal = LightReal(opt,model,avatar)
return nerfreal
#@app.route('/offer', methods=['POST'])
async def offer(request):
params = await request.json()
offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"])
if len(nerfreals) >= opt.max_session:
print('reach max session')
return -1
sessionid = randN(6) #len(nerfreals)
print('sessionid=',sessionid)
nerfreals[sessionid] = None
nerfreal = await asyncio.get_event_loop().run_in_executor(None, build_nerfreal,sessionid)
nerfreals[sessionid] = nerfreal
pc = RTCPeerConnection()
pcs.add(pc)
@pc.on("connectionstatechange")
async def on_connectionstatechange():
print("Connection state is %s" % pc.connectionState)
if pc.connectionState == "failed":
await pc.close()
pcs.discard(pc)
del nerfreals[sessionid]
if pc.connectionState == "closed":
pcs.discard(pc)
del nerfreals[sessionid]
player = HumanPlayer(nerfreals[sessionid])
audio_sender = pc.addTrack(player.audio)
video_sender = pc.addTrack(player.video)
capabilities = RTCRtpSender.getCapabilities("video")
preferences = list(filter(lambda x: x.name == "H264", capabilities.codecs))
preferences += list(filter(lambda x: x.name == "VP8", capabilities.codecs))
preferences += list(filter(lambda x: x.name == "rtx", capabilities.codecs))
transceiver = pc.getTransceivers()[1]
transceiver.setCodecPreferences(preferences)
await pc.setRemoteDescription(offer)
answer = await pc.createAnswer()
await pc.setLocalDescription(answer)
#return jsonify({"sdp": pc.localDescription.sdp, "type": pc.localDescription.type})
return web.Response(
content_type="application/json",
text=json.dumps(
{"sdp": pc.localDescription.sdp, "type": pc.localDescription.type, "sessionid":sessionid}
),
)
async def human(request):
params = await request.json()
sessionid = params.get('sessionid',0)
if params.get('interrupt'):
nerfreals[sessionid].flush_talk()
if params['type']=='echo':
nerfreals[sessionid].put_msg_txt(params['text'])
elif params['type']=='chat':
res=await asyncio.get_event_loop().run_in_executor(None, llm_response, params['text'],nerfreals[sessionid])
#nerfreals[sessionid].put_msg_txt(res)
return web.Response(
content_type="application/json",
text=json.dumps(
{"code": 0, "data":"ok"}
),
)
async def humanaudio(request):
try:
form= await request.post()
sessionid = int(form.get('sessionid',0))
fileobj = form["file"]
filename=fileobj.filename
filebytes=fileobj.file.read()
nerfreals[sessionid].put_audio_file(filebytes)
return web.Response(
content_type="application/json",
text=json.dumps(
{"code": 0, "msg":"ok"}
),
)
except Exception as e:
return web.Response(
content_type="application/json",
text=json.dumps(
{"code": -1, "msg":"err","data": ""+e.args[0]+""}
),
)
async def set_audiotype(request):
params = await request.json()
sessionid = params.get('sessionid',0)
nerfreals[sessionid].set_curr_state(params['audiotype'],params['reinit'])
return web.Response(
content_type="application/json",
text=json.dumps(
{"code": 0, "data":"ok"}
),
)
async def record(request):
params = await request.json()
sessionid = params.get('sessionid',0)
if params['type']=='start_record':
# nerfreals[sessionid].put_msg_txt(params['text'])
nerfreals[sessionid].start_recording()
elif params['type']=='end_record':
nerfreals[sessionid].stop_recording()
return web.Response(
content_type="application/json",
text=json.dumps(
{"code": 0, "data":"ok"}
),
)
async def is_speaking(request):
params = await request.json()
sessionid = params.get('sessionid',0)
return web.Response(
content_type="application/json",
text=json.dumps(
{"code": 0, "data": nerfreals[sessionid].is_speaking()}
),
)
async def on_shutdown(app):
# close peer connections
coros = [pc.close() for pc in pcs]
await asyncio.gather(*coros)
pcs.clear()
async def post(url,data):
try:
async with aiohttp.ClientSession() as session:
async with session.post(url,data=data) as response:
return await response.text()
except aiohttp.ClientError as e:
print(f'Error: {e}')
async def run(push_url,sessionid):
nerfreal = await asyncio.get_event_loop().run_in_executor(None, build_nerfreal,sessionid)
nerfreals[sessionid] = nerfreal
pc = RTCPeerConnection()
pcs.add(pc)
@pc.on("connectionstatechange")
async def on_connectionstatechange():
print("Connection state is %s" % pc.connectionState)
if pc.connectionState == "failed":
await pc.close()
pcs.discard(pc)
player = HumanPlayer(nerfreals[sessionid])
audio_sender = pc.addTrack(player.audio)
video_sender = pc.addTrack(player.video)
await pc.setLocalDescription(await pc.createOffer())
answer = await post(push_url,pc.localDescription.sdp)
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer,type='answer'))
##########################################
# os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
# os.environ['MULTIPROCESSING_METHOD'] = 'forkserver'
if __name__ == '__main__':
mp.set_start_method('spawn')
parser = argparse.ArgumentParser()
parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source")
parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area")
parser.add_argument('--torso_imgs', type=str, default="", help="torso images path")
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye")
parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use")
parser.add_argument('--workspace', type=str, default='data/video')
parser.add_argument('--seed', type=int, default=0)
### training options
parser.add_argument('--ckpt', type=str, default='data/pretrained/ngp_kf.pth')
parser.add_argument('--num_rays', type=int, default=4096 * 16, help="num rays sampled per image for each training step")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=16, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=16, help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")
### loss set
parser.add_argument('--warmup_step', type=int, default=10000, help="warm up steps")
parser.add_argument('--amb_aud_loss', type=int, default=1, help="use ambient aud loss")
parser.add_argument('--amb_eye_loss', type=int, default=1, help="use ambient eye loss")
parser.add_argument('--unc_loss', type=int, default=1, help="use uncertainty loss")
parser.add_argument('--lambda_amb', type=float, default=1e-4, help="lambda for ambient loss")
### network backbone options
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--bg_img', type=str, default='white', help="background image")
parser.add_argument('--fbg', action='store_true', help="frame-wise bg")
parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes")
parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye")
parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence")
parser.add_argument('--torso_shrink', type=float, default=0.8, help="shrink bg coords to allow more flexibility in deform")
### dataset options
parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)")
parser.add_argument('--preload', type=int, default=0, help="0 means load data from disk on-the-fly, 1 means preload to CPU, 2 means GPU.")
# (the default value is for the fox dataset)
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3")
parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location")
parser.add_argument('--dt_gamma', type=float, default=1/256, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied (sigma)")
parser.add_argument('--density_thresh_torso', type=float, default=0.01, help="threshold for density grid to be occupied (alpha)")
parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")
parser.add_argument('--init_lips', action='store_true', help="init lips region")
parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region")
parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...")
parser.add_argument('--torso', action='store_true', help="fix head and train torso")
parser.add_argument('--head_ckpt', type=str, default='', help="head model")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=450, help="GUI width")
parser.add_argument('--H', type=int, default=450, help="GUI height")
parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
### else
parser.add_argument('--att', type=int, default=2, help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)")
parser.add_argument('--aud', type=str, default='', help="audio source (empty will load the default, else should be a path to a npy file)")
parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits")
parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off")
parser.add_argument('--ind_num', type=int, default=10000, help="number of individual codes, should be larger than training dataset size")
parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off")
parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension")
parser.add_argument('--part', action='store_true', help="use partial training data (1/10)")
parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)")
parser.add_argument('--train_camera', action='store_true', help="optimize camera pose")
parser.add_argument('--smooth_path', action='store_true', help="brute-force smooth camera pose trajectory with a window size")
parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size")
# asr
parser.add_argument('--asr', action='store_true', help="load asr for real-time app")
parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input")
parser.add_argument('--asr_play', action='store_true', help="play out the audio")
#parser.add_argument('--asr_model', type=str, default='deepspeech')
parser.add_argument('--asr_model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto') #
# parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
# parser.add_argument('--asr_model', type=str, default='facebook/hubert-large-ls960-ft')
parser.add_argument('--asr_save_feats', action='store_true')
# audio FPS
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length (unit: 20ms)
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=8)
parser.add_argument('-r', type=int, default=10)
parser.add_argument('--fullbody', action='store_true', help="fullbody human")
parser.add_argument('--fullbody_img', type=str, default='data/fullbody/img')
parser.add_argument('--fullbody_width', type=int, default=580)
parser.add_argument('--fullbody_height', type=int, default=1080)
parser.add_argument('--fullbody_offset_x', type=int, default=0)
parser.add_argument('--fullbody_offset_y', type=int, default=0)
#musetalk opt
parser.add_argument('--avatar_id', type=str, default='avator_1')
parser.add_argument('--bbox_shift', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=16)
# parser.add_argument('--customvideo', action='store_true', help="custom video")
# parser.add_argument('--customvideo_img', type=str, default='data/customvideo/img')
# parser.add_argument('--customvideo_imgnum', type=int, default=1)
parser.add_argument('--customvideo_config', type=str, default='')
parser.add_argument('--tts', type=str, default='edgetts') #xtts gpt-sovits cosyvoice
parser.add_argument('--REF_FILE', type=str, default=None)
parser.add_argument('--REF_TEXT', type=str, default=None)
parser.add_argument('--TTS_SERVER', type=str, default='http://127.0.0.1:9880') # http://localhost:9000
# parser.add_argument('--CHARACTER', type=str, default='test')
# parser.add_argument('--EMOTION', type=str, default='default')
parser.add_argument('--model', type=str, default='ernerf') #musetalk wav2lip
parser.add_argument('--transport', type=str, default='rtcpush') #rtmp webrtc rtcpush
parser.add_argument('--push_url', type=str, default='http://localhost:1985/rtc/v1/whip/?app=live&stream=livestream') #rtmp://localhost/live/livestream
parser.add_argument('--max_session', type=int, default=1) #multi session count
parser.add_argument('--listenport', type=int, default=8010)
opt = parser.parse_args()
#app.config.from_object(opt)
#print(app.config)
opt.customopt = []
if opt.customvideo_config!='':
with open(opt.customvideo_config,'r') as file:
opt.customopt = json.load(file)
if opt.model == 'ernerf':
from nerfreal import NeRFReal,load_model,load_avatar
model = load_model(opt)
avatar = load_avatar(opt)
# we still need test_loader to provide audio features for testing.
# for k in range(opt.max_session):
# opt.sessionid=k
# nerfreal = NeRFReal(opt, trainer, test_loader,audio_processor,audio_model)
# nerfreals.append(nerfreal)
elif opt.model == 'musetalk':
from musereal import MuseReal,load_model,load_avatar,warm_up
print(opt)
model = load_model()
avatar = load_avatar(opt.avatar_id)
warm_up(opt.batch_size,model)
# for k in range(opt.max_session):
# opt.sessionid=k
# nerfreal = MuseReal(opt,audio_processor,vae, unet, pe,timesteps)
# nerfreals.append(nerfreal)
elif opt.model == 'wav2lip':
from lipreal import LipReal,load_model,load_avatar,warm_up
print(opt)
model = load_model("./models/wav2lip.pth")
avatar = load_avatar(opt.avatar_id)
warm_up(opt.batch_size,model,256)
# for k in range(opt.max_session):
# opt.sessionid=k
# nerfreal = LipReal(opt,model)
# nerfreals.append(nerfreal)
elif opt.model == 'ultralight':
from lightreal import LightReal,load_model,load_avatar,warm_up
print(opt)
model = load_model(opt)
avatar = load_avatar(opt.avatar_id)
warm_up(opt.batch_size,avatar,160)
if opt.transport=='rtmp':
thread_quit = Event()
nerfreals[0] = build_nerfreal(0)
rendthrd = Thread(target=nerfreals[0].render,args=(thread_quit,))
rendthrd.start()
#############################################################################
appasync = web.Application()
appasync.on_shutdown.append(on_shutdown)
appasync.router.add_post("/offer", offer)
appasync.router.add_post("/human", human)
appasync.router.add_post("/humanaudio", humanaudio)
appasync.router.add_post("/set_audiotype", set_audiotype)
appasync.router.add_post("/record", record)
appasync.router.add_post("/is_speaking", is_speaking)
appasync.router.add_static('/',path='web')
# Configure default CORS settings.
cors = aiohttp_cors.setup(appasync, defaults={
"*": aiohttp_cors.ResourceOptions(
allow_credentials=True,
expose_headers="*",
allow_headers="*",
)
})
# Configure CORS on all routes.
for route in list(appasync.router.routes()):
cors.add(route)
pagename='webrtcapi.html'
if opt.transport=='rtmp':
pagename='echoapi.html'
elif opt.transport=='rtcpush':
pagename='rtcpushapi.html'
print('start http server; http://<serverip>:'+str(opt.listenport)+'/'+pagename)
def run_server(runner):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(runner.setup())
site = web.TCPSite(runner, '0.0.0.0', opt.listenport)
loop.run_until_complete(site.start())
if opt.transport=='rtcpush':
for k in range(opt.max_session):
push_url = opt.push_url
if k!=0:
push_url = opt.push_url+str(k)
loop.run_until_complete(run(push_url,k))
loop.run_forever()
#Thread(target=run_server, args=(web.AppRunner(appasync),)).start()
run_server(web.AppRunner(appasync))
#app.on_shutdown.append(on_shutdown)
#app.router.add_post("/offer", offer)
# print('start websocket server')
# server = pywsgi.WSGIServer(('0.0.0.0', 8000), app, handler_class=WebSocketHandler)
# server.serve_forever()