import torch from torch import nn from torch.nn import functional as F from .conv_384 import Conv2dTranspose, Conv2d, nonorm_Conv2d class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class SAM(nn.Module): def __init__(self): super(SAM, self).__init__() self.sa = SpatialAttention() def forward(self, sp, se): sp_att = self.sa(sp) out = se * sp_att + se return out class Wav2Lip(nn.Module): def __init__(self, audio_encoder=None): super(Wav2Lip, self).__init__() self.sam = SAM() self.face_encoder_blocks = nn.ModuleList([ nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3), Conv2d(16, 16, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(16, 16, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(16, 16, kernel_size=3, stride=1, padding=1, residual=True)), # 192, 192 nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1), # 96, 96 Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)), nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1), # 48, 48 Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)), nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1), # 24, 24 Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)), nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1), # 12, 12 Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)), nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 6, 6 Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True)), nn.Sequential(Conv2d(512, 1024, kernel_size=3, stride=2, padding=1), # 3, 3 Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True)), nn.Sequential(Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0), # 1, 1 Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0), Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)), ]) if audio_encoder is None: self.audio_encoder = nn.Sequential( Conv2d(1, 32, kernel_size=3, stride=1, padding=1), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 128, kernel_size=3, stride=3, padding=1), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 512, kernel_size=3, stride=1, padding=1), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(512, 1024, kernel_size=3, stride=1, padding=0), Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)) else: self.audio_encoder = audio_encoder for p in self.audio_encoder.parameters(): p.requires_grad = False self.audio_refine = nn.Sequential( Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0), Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)) self.face_decoder_blocks = nn.ModuleList([ nn.Sequential(Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0), ), # + 1024 nn.Sequential(Conv2dTranspose(2048, 1024, kernel_size=3, stride=1, padding=0), # 3,3 Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True), ), # + 1024 nn.Sequential(Conv2dTranspose(2048, 1024, kernel_size=3, stride=2, padding=1, output_padding=1), Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True), ), # 6, 6 + 512 nn.Sequential(Conv2dTranspose(1536, 768, kernel_size=3, stride=2, padding=1, output_padding=1), Conv2d(768, 768, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(768, 768, kernel_size=3, stride=1, padding=1, residual=True), ), # 12, 12 + 256 nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ), # 24, 24 + 128 nn.Sequential(Conv2dTranspose(640, 256, kernel_size=3, stride=2, padding=1, output_padding=1), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), ), # 48, 48 + 64 nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), ), # 96, 96 + 32 nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), ), ]) # 192, 192 + 16 self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1), nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0), nn.Sigmoid()) def freeze_audio_encoder(self): for p in self.audio_encoder.parameters(): p.requires_grad = False def forward(self, audio_sequences, face_sequences): B = audio_sequences.size(0) input_dim_size = len(face_sequences.size()) if input_dim_size > 4: audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0) face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0) audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1 feats = [] x = face_sequences for f in self.face_encoder_blocks: x = f(x) feats.append(x) x = audio_embedding for f in self.face_decoder_blocks: x = f(x) try: x = self.sam(feats[-1], x) x = torch.cat((x, feats[-1]), dim=1) except Exception as e: print(x.size()) print(feats[-1].size()) raise e feats.pop() x = self.output_block(x) if input_dim_size > 4: x = torch.split(x, B, dim=0) # [(B, C, H, W)] outputs = torch.stack(x, dim=2) # (B, C, T, H, W) else: outputs = x return outputs