############################################################################### # Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking # email: lipku@foxmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import math import torch import numpy as np #from .utils import * import os import time import cv2 import glob import pickle import copy import queue from queue import Queue from threading import Thread, Event import torch.multiprocessing as mp from hubertasr import HubertASR import asyncio from av import AudioFrame, VideoFrame from basereal import BaseReal #from imgcache import ImgCache from tqdm import tqdm #new import os import cv2 import torch import numpy as np import torch.nn as nn from torch import optim from tqdm import tqdm from transformers import Wav2Vec2Processor, HubertModel from torch.utils.data import DataLoader from ultralight.unet import Model from ultralight.audio2feature import Audio2Feature from logger import logger device = "cuda" if torch.cuda.is_available() else ("mps" if (hasattr(torch.backends, "mps") and torch.backends.mps.is_available()) else "cpu") print('Using {} for inference.'.format(device)) def load_model(opt): audio_processor = Audio2Feature() return audio_processor def load_avatar(avatar_id): avatar_path = f"./data/avatars/{avatar_id}" full_imgs_path = f"{avatar_path}/full_imgs" face_imgs_path = f"{avatar_path}/face_imgs" coords_path = f"{avatar_path}/coords.pkl" model = Model(6, 'hubert').to(device) # 假设Model是你自定义的类 model.load_state_dict(torch.load(f"{avatar_path}/ultralight.pth")) with open(coords_path, 'rb') as f: coord_list_cycle = pickle.load(f) input_img_list = glob.glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]')) input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) frame_list_cycle = read_imgs(input_img_list) #self.imagecache = ImgCache(len(self.coord_list_cycle),self.full_imgs_path,1000) input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]')) input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) face_list_cycle = read_imgs(input_face_list) return model.eval(),frame_list_cycle,face_list_cycle,coord_list_cycle @torch.no_grad() def warm_up(batch_size,avatar,modelres): logger.info('warmup model...') model,_,_,_ = avatar img_batch = torch.ones(batch_size, 6, modelres, modelres).to(device) mel_batch = torch.ones(batch_size, 32, 32, 32).to(device) model(img_batch, mel_batch) def read_imgs(img_list): frames = [] logger.info('reading images...') for img_path in tqdm(img_list): frame = cv2.imread(img_path) frames.append(frame) return frames def get_audio_features(features, index): left = index - 8 right = index + 8 pad_left = 0 pad_right = 0 if left < 0: pad_left = -left left = 0 if right > features.shape[0]: pad_right = right - features.shape[0] right = features.shape[0] auds = torch.from_numpy(features[left:right]) if pad_left > 0: auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0) if pad_right > 0: auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16] return auds def read_lms(lms_list): land_marks = [] logger.info('reading lms...') for lms_path in tqdm(lms_list): file_landmarks = [] # Store landmarks for this file with open(lms_path, "r") as f: lines = f.read().splitlines() for line in lines: arr = list(filter(None, line.split(" "))) if arr: arr = np.array(arr, dtype=np.float32) file_landmarks.append(arr) land_marks.append(file_landmarks) # Add the file's landmarks to the overall list return land_marks def __mirror_index(size, index): #size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 def inference(quit_event, batch_size, face_list_cycle, audio_feat_queue, audio_out_queue, res_frame_queue, model): length = len(face_list_cycle) index = 0 count = 0 counttime = 0 logger.info('start inference') while not quit_event.is_set(): starttime=time.perf_counter() try: mel_batch = audio_feat_queue.get(block=True, timeout=1) except queue.Empty: continue is_all_silence=True audio_frames = [] for _ in range(batch_size*2): frame,type_,eventpoint = audio_out_queue.get() audio_frames.append((frame,type_,eventpoint)) if type_==0: is_all_silence=False if is_all_silence: for i in range(batch_size): res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2])) index = index + 1 else: t = time.perf_counter() img_batch = [] for i in range(batch_size): idx = __mirror_index(length, index + i) #face = face_list_cycle[idx] crop_img = face_list_cycle[idx] #face[ymin:ymax, xmin:xmax] # h, w = crop_img.shape[:2] #crop_img = cv2.resize(crop_img, (168, 168), cv2.INTER_AREA) #crop_img_ori = crop_img.copy() img_real_ex = crop_img[4:164, 4:164].copy() img_real_ex_ori = img_real_ex.copy() img_masked = cv2.rectangle(img_real_ex_ori,(5,5,150,145),(0,0,0),-1) img_masked = img_masked.transpose(2,0,1).astype(np.float32) img_real_ex = img_real_ex.transpose(2,0,1).astype(np.float32) img_real_ex_T = torch.from_numpy(img_real_ex / 255.0) img_masked_T = torch.from_numpy(img_masked / 255.0) img_concat_T = torch.cat([img_real_ex_T, img_masked_T], axis=0)[None] img_batch.append(img_concat_T) reshaped_mel_batch = [arr.reshape(32, 32, 32) for arr in mel_batch] mel_batch = torch.stack([torch.from_numpy(arr) for arr in reshaped_mel_batch]) img_batch = torch.stack(img_batch).squeeze(1) with torch.no_grad(): pred = model(img_batch.cuda(),mel_batch.cuda()) pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. counttime += (time.perf_counter() - t) count += batch_size if count >= 100: logger.info(f"------actual avg infer fps:{count / counttime:.4f}") count = 0 counttime = 0 for i,res_frame in enumerate(pred): #self.__pushmedia(res_frame,loop,audio_track,video_track) res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2])) index = index + 1 # for i, pred_frame in enumerate(pred): # pred_frame_uint8 = np.array(pred_frame, dtype=np.uint8) # res_frame_queue.put((pred_frame_uint8, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2])) # index = (index + 1) % length #print('total batch time:', time.perf_counter() - starttime) logger.info('lightreal inference processor stop') class LightReal(BaseReal): @torch.no_grad() def __init__(self, opt, model, avatar): super().__init__(opt) #self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters. # self.W = opt.W # self.H = opt.H self.fps = opt.fps # 20 ms per frame self.batch_size = opt.batch_size self.idx = 0 self.res_frame_queue = Queue(self.batch_size*2) #mp.Queue #self.__loadavatar() audio_processor = model self.model,self.frame_list_cycle,self.face_list_cycle,self.coord_list_cycle = avatar self.asr = HubertASR(opt,self,audio_processor) self.asr.warm_up() #self.__warm_up() self.render_event = mp.Event() def __del__(self): logger.info(f'lightreal({self.sessionid}) delete') def paste_back_frame(self,pred_frame,idx:int): bbox = self.coord_list_cycle[idx] combine_frame = copy.deepcopy(self.frame_list_cycle[idx]) x1, y1, x2, y2 = bbox crop_img = self.face_list_cycle[idx] crop_img_ori = crop_img.copy() #res_frame = np.array(res_frame, dtype=np.uint8) crop_img_ori[4:164, 4:164] = pred_frame.astype(np.uint8) crop_img_ori = cv2.resize(crop_img_ori, (x2-x1,y2-y1)) combine_frame[y1:y2, x1:x2] = crop_img_ori return combine_frame def render(self,quit_event,loop=None,audio_track=None,video_track=None): #if self.opt.asr: # self.asr.warm_up() self.tts.render(quit_event) self.init_customindex() process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track)) process_thread.start() Thread(target=inference, args=(quit_event,self.batch_size,self.face_list_cycle,self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue, self.model,)).start() #mp.Process #self.render_event.set() #start infer process render count=0 totaltime=0 _starttime=time.perf_counter() #_totalframe=0 while not quit_event.is_set(): # update texture every frame # audio stream thread... t = time.perf_counter() self.asr.run_step() # if video_track._queue.qsize()>=2*self.opt.batch_size: # print('sleep qsize=',video_track._queue.qsize()) # time.sleep(0.04*video_track._queue.qsize()*0.8) if video_track and video_track._queue.qsize()>=5: logger.debug('sleep qsize=%d',video_track._queue.qsize()) time.sleep(0.04*video_track._queue.qsize()*0.8) # delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms # if delay > 0: # time.sleep(delay) #self.render_event.clear() #end infer process render logger.info('lightreal thread stop')