############################################################################### # Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking # email: lipku@foxmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import math import torch import numpy as np #from .utils import * import subprocess import os import time import torch.nn.functional as F import cv2 import glob import pickle import copy import queue from queue import Queue from threading import Thread, Event import torch.multiprocessing as mp from musetalk.utils.utils import get_file_type,get_video_fps,datagen #from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending from musetalk.utils.utils import load_all_model,load_diffusion_model,load_audio_model from musetalk.whisper.audio2feature import Audio2Feature from museasr import MuseASR import asyncio from av import AudioFrame, VideoFrame from basereal import BaseReal from tqdm import tqdm def read_imgs(img_list): frames = [] print('reading images...') for img_path in tqdm(img_list): frame = cv2.imread(img_path) frames.append(frame) return frames def __mirror_index(size, index): #size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 @torch.no_grad() def inference(render_event,batch_size,input_latent_list_cycle,audio_feat_queue,audio_out_queue,res_frame_queue, vae, unet, pe,timesteps): #vae, unet, pe,timesteps # vae, unet, pe = load_diffusion_model() # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # timesteps = torch.tensor([0], device=device) # pe = pe.half() # vae.vae = vae.vae.half() # unet.model = unet.model.half() length = len(input_latent_list_cycle) index = 0 count=0 counttime=0 print('start inference') while render_event.is_set(): starttime=time.perf_counter() try: whisper_chunks = audio_feat_queue.get(block=True, timeout=1) except queue.Empty: continue is_all_silence=True audio_frames = [] for _ in range(batch_size*2): frame,type = audio_out_queue.get() audio_frames.append((frame,type)) if type==0: is_all_silence=False if is_all_silence: for i in range(batch_size): res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2])) index = index + 1 else: # print('infer=======') t=time.perf_counter() whisper_batch = np.stack(whisper_chunks) latent_batch = [] for i in range(batch_size): idx = __mirror_index(length,index+i) latent = input_latent_list_cycle[idx] latent_batch.append(latent) latent_batch = torch.cat(latent_batch, dim=0) # for i, (whisper_batch,latent_batch) in enumerate(gen): audio_feature_batch = torch.from_numpy(whisper_batch) audio_feature_batch = audio_feature_batch.to(device=unet.device, dtype=unet.model.dtype) audio_feature_batch = pe(audio_feature_batch) latent_batch = latent_batch.to(dtype=unet.model.dtype) # print('prepare time:',time.perf_counter()-t) # t=time.perf_counter() pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample # print('unet time:',time.perf_counter()-t) # t=time.perf_counter() recon = vae.decode_latents(pred_latents) # infer_inqueue.put((whisper_batch,latent_batch,sessionid)) # recon,outsessionid = infer_outqueue.get() # if outsessionid != sessionid: # print('outsessionid:',outsessionid,' mysessionid:',sessionid) # print('vae time:',time.perf_counter()-t) #print('diffusion len=',len(recon)) counttime += (time.perf_counter() - t) count += batch_size #_totalframe += 1 if count>=100: print(f"------actual avg infer fps:{count/counttime:.4f}") count=0 counttime=0 for i,res_frame in enumerate(recon): #self.__pushmedia(res_frame,loop,audio_track,video_track) res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2])) index = index + 1 #print('total batch time:',time.perf_counter()-starttime) print('musereal inference processor stop') class MuseReal(BaseReal): @torch.no_grad() def __init__(self, opt, audio_processor:Audio2Feature,vae, unet, pe,timesteps): super().__init__(opt) #self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters. self.W = opt.W self.H = opt.H self.fps = opt.fps # 20 ms per frame #### musetalk self.avatar_id = opt.avatar_id self.video_path = '' #video_path self.bbox_shift = opt.bbox_shift self.avatar_path = f"./data/avatars/{self.avatar_id}" self.full_imgs_path = f"{self.avatar_path}/full_imgs" self.coords_path = f"{self.avatar_path}/coords.pkl" self.latents_out_path= f"{self.avatar_path}/latents.pt" self.video_out_path = f"{self.avatar_path}/vid_output/" self.mask_out_path =f"{self.avatar_path}/mask" self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl" self.avatar_info_path = f"{self.avatar_path}/avator_info.json" self.avatar_info = { "avatar_id":self.avatar_id, "video_path":self.video_path, "bbox_shift":self.bbox_shift } self.batch_size = opt.batch_size self.idx = 0 self.res_frame_queue = mp.Queue(self.batch_size*2) #self.__loadmodels() self.audio_processor= audio_processor self.__loadavatar() self.asr = MuseASR(opt,self,self.audio_processor) self.asr.warm_up() #self.__warm_up() self.render_event = mp.Event() self.vae = vae self.unet = unet self.pe = pe self.timesteps = timesteps # def __loadmodels(self): # # load model weights # self.audio_processor= load_audio_model() # self.audio_processor, self.vae, self.unet, self.pe = load_all_model() # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # self.timesteps = torch.tensor([0], device=device) # self.pe = self.pe.half() # self.vae.vae = self.vae.vae.half() # self.unet.model = self.unet.model.half() def __loadavatar(self): self.input_latent_list_cycle = torch.load(self.latents_out_path,weights_only=True) with open(self.coords_path, 'rb') as f: self.coord_list_cycle = pickle.load(f) input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) self.frame_list_cycle = read_imgs(input_img_list) with open(self.mask_coords_path, 'rb') as f: self.mask_coords_list_cycle = pickle.load(f) input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) self.mask_list_cycle = read_imgs(input_mask_list) def __mirror_index(self, index): size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 def __warm_up(self): self.asr.run_step() whisper_chunks = self.asr.get_next_feat() whisper_batch = np.stack(whisper_chunks) latent_batch = [] for i in range(self.batch_size): idx = self.__mirror_index(self.idx+i) latent = self.input_latent_list_cycle[idx] latent_batch.append(latent) latent_batch = torch.cat(latent_batch, dim=0) print('infer=======') # for i, (whisper_batch,latent_batch) in enumerate(gen): audio_feature_batch = torch.from_numpy(whisper_batch) audio_feature_batch = audio_feature_batch.to(device=self.unet.device, dtype=self.unet.model.dtype) audio_feature_batch = self.pe(audio_feature_batch) latent_batch = latent_batch.to(dtype=self.unet.model.dtype) pred_latents = self.unet.model(latent_batch, self.timesteps, encoder_hidden_states=audio_feature_batch).sample recon = self.vae.decode_latents(pred_latents) def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None): while not quit_event.is_set(): try: res_frame,idx,audio_frames = self.res_frame_queue.get(block=True, timeout=1) except queue.Empty: continue if audio_frames[0][1]!=0 and audio_frames[1][1]!=0: #全为静音数据,只需要取fullimg self.speaking = False audiotype = audio_frames[0][1] if self.custom_index.get(audiotype) is not None: #有自定义视频 mirindex = self.mirror_index(len(self.custom_img_cycle[audiotype]),self.custom_index[audiotype]) combine_frame = self.custom_img_cycle[audiotype][mirindex] self.custom_index[audiotype] += 1 # if not self.custom_opt[audiotype].loop and self.custom_index[audiotype]>=len(self.custom_img_cycle[audiotype]): # self.curr_state = 1 #当前视频不循环播放,切换到静音状态 else: combine_frame = self.frame_list_cycle[idx] else: self.speaking = True bbox = self.coord_list_cycle[idx] ori_frame = copy.deepcopy(self.frame_list_cycle[idx]) x1, y1, x2, y2 = bbox try: res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) except: continue mask = self.mask_list_cycle[idx] mask_crop_box = self.mask_coords_list_cycle[idx] #combine_frame = get_image(ori_frame,res_frame,bbox) #t=time.perf_counter() combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box) #print('blending time:',time.perf_counter()-t) image = combine_frame #(outputs['image'] * 255).astype(np.uint8) new_frame = VideoFrame.from_ndarray(image, format="bgr24") asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop) self.record_video_data(image) #self.recordq_video.put(new_frame) for audio_frame in audio_frames: frame,type = audio_frame frame = (frame * 32767).astype(np.int16) new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0]) new_frame.planes[0].update(frame.tobytes()) new_frame.sample_rate=16000 # if audio_track._queue.qsize()>10: # time.sleep(0.1) asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop) self.record_audio_data(frame) #self.recordq_audio.put(new_frame) print('musereal process_frames thread stop') def render(self,quit_event,loop=None,audio_track=None,video_track=None): #if self.opt.asr: # self.asr.warm_up() self.tts.render(quit_event) self.init_customindex() process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track)) process_thread.start() self.render_event.set() #start infer process render Thread(target=inference, args=(self.render_event,self.batch_size,self.input_latent_list_cycle, self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue, self.vae, self.unet, self.pe,self.timesteps)).start() #mp.Process count=0 totaltime=0 _starttime=time.perf_counter() #_totalframe=0 while not quit_event.is_set(): #todo # update texture every frame # audio stream thread... t = time.perf_counter() self.asr.run_step() #self.test_step(loop,audio_track,video_track) # totaltime += (time.perf_counter() - t) # count += self.opt.batch_size # if count>=100: # print(f"------actual avg infer fps:{count/totaltime:.4f}") # count=0 # totaltime=0 if video_track._queue.qsize()>=1.5*self.opt.batch_size: print('sleep qsize=',video_track._queue.qsize()) time.sleep(0.04*video_track._queue.qsize()*0.8) # if video_track._queue.qsize()>=5: # print('sleep qsize=',video_track._queue.qsize()) # time.sleep(0.04*video_track._queue.qsize()*0.8) # delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms # if delay > 0: # time.sleep(delay) self.render_event.clear() #end infer process render print('musereal thread stop')