import torch from torch import nn from torch.nn import functional as F from .conv import Conv2d class SyncNet_color(nn.Module): def __init__(self): super(SyncNet_color, self).__init__() self.face_encoder = nn.Sequential( Conv2d(15, 16, kernel_size=(7, 7), stride=1, padding=3, act="leaky"), # 192, 384 Conv2d(16, 32, kernel_size=5, stride=(1, 2), padding=1, act="leaky"), # 192, 192 Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(32, 64, kernel_size=3, stride=2, padding=1, act="leaky"), # 96, 96 Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(64, 128, kernel_size=3, stride=2, padding=1, act="leaky"), # 48, 48 Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(128, 256, kernel_size=3, stride=2, padding=1, act="leaky"), # 24, 24 Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), ################### # Modified blocks ################## Conv2d(256, 512, kernel_size=3, stride=2, padding=1, act="leaky"), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), # 12, 12 Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, act="leaky"), Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), # 6, 6 Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1, act="leaky"), # 3, 3 Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0, act="leaky"), Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act="relu")) # 1, 1 ################## # print(summary(self.face_encoder, (15, 96, 192)), act="relu") self.audio_encoder = nn.Sequential( Conv2d(1, 32, kernel_size=3, stride=1, padding=1, act="leaky"), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, act="leaky"), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(64, 128, kernel_size=3, stride=3, padding=1, act="leaky"), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1, act="leaky"), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), ################### # Modified blocks ################## Conv2d(256, 512, kernel_size=3, stride=1, padding=1, act="leaky"), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act="leaky"), Conv2d(512, 1024, kernel_size=3, stride=1, padding=0, act="relu"), Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act="relu")) ################## # print(summary(self.audio_encoder, (1, 80, 16))) def forward(self, audio_sequences, face_sequences): # audio_sequences := (B, dim, T) face_embedding = self.face_encoder(face_sequences) audio_embedding = self.audio_encoder(audio_sequences) audio_embedding = audio_embedding.view(audio_embedding.size(0), -1) face_embedding = face_embedding.view(face_embedding.size(0), -1) audio_embedding = F.normalize(audio_embedding, p=2, dim=1) face_embedding = F.normalize(face_embedding, p=2, dim=1) return audio_embedding, face_embedding def audio_forward(self, audio_sequences): return self.audio_encoder(audio_sequences)