############################################################################### # Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking # email: lipku@foxmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import math import torch import numpy as np #from .utils import * import subprocess import os import time import torch.nn.functional as F import cv2 import glob import pickle import copy import queue from queue import Queue from threading import Thread, Event import torch.multiprocessing as mp from musetalk.utils.utils import get_file_type,get_video_fps,datagen #from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending from musetalk.utils.utils import load_all_model,load_diffusion_model,load_audio_model from musetalk.whisper.audio2feature import Audio2Feature from museasr import MuseASR import asyncio from av import AudioFrame, VideoFrame from basereal import BaseReal from tqdm import tqdm from logger import logger def load_model(): # load model weights audio_processor,vae, unet, pe = load_all_model() device = torch.device("cuda" if torch.cuda.is_available() else ("mps" if (hasattr(torch.backends, "mps") and torch.backends.mps.is_available()) else "cpu")) timesteps = torch.tensor([0], device=device) pe = pe.half() vae.vae = vae.vae.half() #vae.vae.share_memory() unet.model = unet.model.half() #unet.model.share_memory() return vae, unet, pe, timesteps, audio_processor def load_avatar(avatar_id): #self.video_path = '' #video_path #self.bbox_shift = opt.bbox_shift avatar_path = f"./data/avatars/{avatar_id}" full_imgs_path = f"{avatar_path}/full_imgs" coords_path = f"{avatar_path}/coords.pkl" latents_out_path= f"{avatar_path}/latents.pt" video_out_path = f"{avatar_path}/vid_output/" mask_out_path =f"{avatar_path}/mask" mask_coords_path =f"{avatar_path}/mask_coords.pkl" avatar_info_path = f"{avatar_path}/avator_info.json" # self.avatar_info = { # "avatar_id":self.avatar_id, # "video_path":self.video_path, # "bbox_shift":self.bbox_shift # } input_latent_list_cycle = torch.load(latents_out_path) #,weights_only=True with open(coords_path, 'rb') as f: coord_list_cycle = pickle.load(f) input_img_list = glob.glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]')) input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) frame_list_cycle = read_imgs(input_img_list) with open(mask_coords_path, 'rb') as f: mask_coords_list_cycle = pickle.load(f) input_mask_list = glob.glob(os.path.join(mask_out_path, '*.[jpJP][pnPN]*[gG]')) input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) mask_list_cycle = read_imgs(input_mask_list) return frame_list_cycle,mask_list_cycle,coord_list_cycle,mask_coords_list_cycle,input_latent_list_cycle @torch.no_grad() def warm_up(batch_size,model): # 预热函数 logger.info('warmup model...') vae, unet, pe, timesteps, audio_processor = model #batch_size = 16 #timesteps = torch.tensor([0], device=unet.device) whisper_batch = np.ones((batch_size, 50, 384), dtype=np.uint8) latent_batch = torch.ones(batch_size, 8, 32, 32).to(unet.device) audio_feature_batch = torch.from_numpy(whisper_batch) audio_feature_batch = audio_feature_batch.to(device=unet.device, dtype=unet.model.dtype) audio_feature_batch = pe(audio_feature_batch) latent_batch = latent_batch.to(dtype=unet.model.dtype) pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample vae.decode_latents(pred_latents) def read_imgs(img_list): frames = [] logger.info('reading images...') for img_path in tqdm(img_list): frame = cv2.imread(img_path) frames.append(frame) return frames def __mirror_index(size, index): #size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 @torch.no_grad() def inference(render_event,batch_size,input_latent_list_cycle,audio_feat_queue,audio_out_queue,res_frame_queue, vae, unet, pe,timesteps): #vae, unet, pe,timesteps # vae, unet, pe = load_diffusion_model() # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # timesteps = torch.tensor([0], device=device) # pe = pe.half() # vae.vae = vae.vae.half() # unet.model = unet.model.half() length = len(input_latent_list_cycle) index = 0 count=0 counttime=0 logger.info('start inference') while render_event.is_set(): starttime=time.perf_counter() try: whisper_chunks = audio_feat_queue.get(block=True, timeout=1) except queue.Empty: continue is_all_silence=True audio_frames = [] for _ in range(batch_size*2): frame,type,eventpoint = audio_out_queue.get() audio_frames.append((frame,type,eventpoint)) if type==0: is_all_silence=False if is_all_silence: for i in range(batch_size): res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2])) index = index + 1 else: # print('infer=======') t=time.perf_counter() whisper_batch = np.stack(whisper_chunks) latent_batch = [] for i in range(batch_size): idx = __mirror_index(length,index+i) latent = input_latent_list_cycle[idx] latent_batch.append(latent) latent_batch = torch.cat(latent_batch, dim=0) # for i, (whisper_batch,latent_batch) in enumerate(gen): audio_feature_batch = torch.from_numpy(whisper_batch) audio_feature_batch = audio_feature_batch.to(device=unet.device, dtype=unet.model.dtype) audio_feature_batch = pe(audio_feature_batch) latent_batch = latent_batch.to(dtype=unet.model.dtype) # print('prepare time:',time.perf_counter()-t) # t=time.perf_counter() pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample # print('unet time:',time.perf_counter()-t) # t=time.perf_counter() recon = vae.decode_latents(pred_latents) # infer_inqueue.put((whisper_batch,latent_batch,sessionid)) # recon,outsessionid = infer_outqueue.get() # if outsessionid != sessionid: # print('outsessionid:',outsessionid,' mysessionid:',sessionid) # print('vae time:',time.perf_counter()-t) #print('diffusion len=',len(recon)) counttime += (time.perf_counter() - t) count += batch_size #_totalframe += 1 if count>=100: logger.info(f"------actual avg infer fps:{count/counttime:.4f}") count=0 counttime=0 for i,res_frame in enumerate(recon): #self.__pushmedia(res_frame,loop,audio_track,video_track) res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2])) index = index + 1 #print('total batch time:',time.perf_counter()-starttime) logger.info('musereal inference processor stop') class MuseReal(BaseReal): @torch.no_grad() def __init__(self, opt, model, avatar): super().__init__(opt) #self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters. self.W = opt.W self.H = opt.H self.fps = opt.fps # 20 ms per frame self.batch_size = opt.batch_size self.idx = 0 self.res_frame_queue = mp.Queue(self.batch_size*2) self.vae, self.unet, self.pe, self.timesteps, self.audio_processor = model self.frame_list_cycle,self.mask_list_cycle,self.coord_list_cycle,self.mask_coords_list_cycle, self.input_latent_list_cycle = avatar #self.__loadavatar() self.asr = MuseASR(opt,self,self.audio_processor) self.asr.warm_up() self.render_event = mp.Event() def __del__(self): logger.info(f'musereal({self.sessionid}) delete') def __mirror_index(self, index): size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 def __warm_up(self): self.asr.run_step() whisper_chunks = self.asr.get_next_feat() whisper_batch = np.stack(whisper_chunks) latent_batch = [] for i in range(self.batch_size): idx = self.__mirror_index(self.idx+i) latent = self.input_latent_list_cycle[idx] latent_batch.append(latent) latent_batch = torch.cat(latent_batch, dim=0) logger.info('infer=======') # for i, (whisper_batch,latent_batch) in enumerate(gen): audio_feature_batch = torch.from_numpy(whisper_batch) audio_feature_batch = audio_feature_batch.to(device=self.unet.device, dtype=self.unet.model.dtype) audio_feature_batch = self.pe(audio_feature_batch) latent_batch = latent_batch.to(dtype=self.unet.model.dtype) pred_latents = self.unet.model(latent_batch, self.timesteps, encoder_hidden_states=audio_feature_batch).sample recon = self.vae.decode_latents(pred_latents) def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None): # 新增状态跟踪变量 self.last_speaking = False self.transition_start = time.time() self.transition_duration = 0.1 # 过渡时间 self.last_silent_frame = None # 静音帧缓存 self.last_speaking_frame = None # 说话帧缓存 while not quit_event.is_set(): try: res_frame,idx,audio_frames = self.res_frame_queue.get(block=True, timeout=1) except queue.Empty: continue # 检测状态变化 current_speaking = not (audio_frames[0][1]!=0 and audio_frames[1][1]!=0) if current_speaking != self.last_speaking: logger.info(f"状态切换:{'静音' if self.last_speaking else '说话'} → {'说话' if current_speaking else '静音'}") self.transition_start = time.time() self.last_speaking = current_speaking if audio_frames[0][1]!=0 and audio_frames[1][1]!=0: self.speaking = False audiotype = audio_frames[0][1] if self.custom_index.get(audiotype) is not None: mirindex = self.mirror_index(len(self.custom_img_cycle[audiotype]),self.custom_index[audiotype]) target_frame = self.custom_img_cycle[audiotype][mirindex] self.custom_index[audiotype] += 1 else: target_frame = self.frame_list_cycle[idx] # 说话→静音过渡 if time.time() - self.transition_start < self.transition_duration and self.last_speaking_frame is not None: alpha = min(1.0, (time.time() - self.transition_start) / self.transition_duration) combine_frame = cv2.addWeighted(self.last_speaking_frame, 1-alpha, target_frame, alpha, 0) else: combine_frame = target_frame # 缓存静音帧 self.last_silent_frame = combine_frame.copy() else: self.speaking = True bbox = self.coord_list_cycle[idx] ori_frame = copy.deepcopy(self.frame_list_cycle[idx]) x1, y1, x2, y2 = bbox try: res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) except Exception as e: logger.warning(f"resize error: {e}") continue mask = self.mask_list_cycle[idx] mask_crop_box = self.mask_coords_list_cycle[idx] # 静音→说话过渡 current_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box) if time.time() - self.transition_start < self.transition_duration and self.last_silent_frame is not None: alpha = min(1.0, (time.time() - self.transition_start) / self.transition_duration) combine_frame = cv2.addWeighted(self.last_silent_frame, 1-alpha, current_frame, alpha, 0) else: combine_frame = current_frame # 缓存说话帧 self.last_speaking_frame = combine_frame.copy() image = combine_frame new_frame = VideoFrame.from_ndarray(image, format="bgr24") asyncio.run_coroutine_threadsafe(video_track._queue.put((new_frame,None)), loop) self.record_video_data(image) for audio_frame in audio_frames: frame,type,eventpoint = audio_frame frame = (frame * 32767).astype(np.int16) new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0]) new_frame.planes[0].update(frame.tobytes()) new_frame.sample_rate=16000 asyncio.run_coroutine_threadsafe(audio_track._queue.put((new_frame,eventpoint)), loop) self.record_audio_data(frame) logger.info('musereal process_frames thread stop') def render(self,quit_event,loop=None,audio_track=None,video_track=None): #if self.opt.asr: # self.asr.warm_up() self.tts.render(quit_event) self.init_customindex() process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track)) process_thread.start() self.render_event.set() #start infer process render Thread(target=inference, args=(self.render_event,self.batch_size,self.input_latent_list_cycle, self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue, self.vae, self.unet, self.pe,self.timesteps)).start() #mp.Process count=0 totaltime=0 _starttime=time.perf_counter() #_totalframe=0 while not quit_event.is_set(): #todo # update texture every frame # audio stream thread... t = time.perf_counter() self.asr.run_step() #self.test_step(loop,audio_track,video_track) # totaltime += (time.perf_counter() - t) # count += self.opt.batch_size # if count>=100: # print(f"------actual avg infer fps:{count/totaltime:.4f}") # count=0 # totaltime=0 if video_track._queue.qsize()>=1.5*self.opt.batch_size: logger.debug('sleep qsize=%d',video_track._queue.qsize()) time.sleep(0.04*video_track._queue.qsize()*0.8) # if video_track._queue.qsize()>=5: # print('sleep qsize=',video_track._queue.qsize()) # time.sleep(0.04*video_track._queue.qsize()*0.8) # delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms # if delay > 0: # time.sleep(delay) self.render_event.clear() #end infer process render logger.info('musereal thread stop')