############################################################################### # Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking # email: lipku@foxmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import math import torch import numpy as np #from .utils import * import os import time import cv2 import glob import pickle import copy import queue from queue import Queue from threading import Thread, Event import torch.multiprocessing as mp from lipasr import LipASR import asyncio from av import AudioFrame, VideoFrame from wav2lip.models import Wav2Lip from basereal import BaseReal #from imgcache import ImgCache from tqdm import tqdm device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using {} for inference.'.format(device)) def _load(checkpoint_path): if device == 'cuda': checkpoint = torch.load(checkpoint_path) #,weights_only=True else: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) return checkpoint def load_model(path): model = Wav2Lip() print("Load checkpoint from: {}".format(path)) checkpoint = _load(path) s = checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace('module.', '')] = v model.load_state_dict(new_s) model = model.to(device) return model.eval() def load_avatar(avatar_id): avatar_path = f"./data/avatars/{avatar_id}" full_imgs_path = f"{avatar_path}/full_imgs" face_imgs_path = f"{avatar_path}/face_imgs" coords_path = f"{avatar_path}/coords.pkl" with open(coords_path, 'rb') as f: coord_list_cycle = pickle.load(f) input_img_list = glob.glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]')) input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) frame_list_cycle = read_imgs(input_img_list) #self.imagecache = ImgCache(len(self.coord_list_cycle),self.full_imgs_path,1000) input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]')) input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) face_list_cycle = read_imgs(input_face_list) return frame_list_cycle,face_list_cycle,coord_list_cycle def read_imgs(img_list): frames = [] print('reading images...') for img_path in tqdm(img_list): frame = cv2.imread(img_path) frames.append(frame) return frames def __mirror_index(size, index): #size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 def inference(quit_event,batch_size,face_list_cycle,audio_feat_queue,audio_out_queue,res_frame_queue,model): #model = load_model("./models/wav2lip.pth") # input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]')) # input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) # face_list_cycle = read_imgs(input_face_list) #input_latent_list_cycle = torch.load(latents_out_path) length = len(face_list_cycle) index = 0 count=0 counttime=0 print('start inference') while not quit_event.is_set(): starttime=time.perf_counter() mel_batch = [] try: mel_batch = audio_feat_queue.get(block=True, timeout=1) except queue.Empty: continue is_all_silence=True audio_frames = [] for _ in range(batch_size*2): frame,type = audio_out_queue.get() audio_frames.append((frame,type)) if type==0: is_all_silence=False if is_all_silence: for i in range(batch_size): res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2])) index = index + 1 else: # print('infer=======') t=time.perf_counter() img_batch = [] for i in range(batch_size): idx = __mirror_index(length,index+i) face = face_list_cycle[idx] img_batch.append(face) img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, face.shape[0]//2:] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) with torch.no_grad(): pred = model(mel_batch, img_batch) pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. counttime += (time.perf_counter() - t) count += batch_size #_totalframe += 1 if count>=100: print(f"------actual avg infer fps:{count/counttime:.4f}") count=0 counttime=0 for i,res_frame in enumerate(pred): #self.__pushmedia(res_frame,loop,audio_track,video_track) res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2])) index = index + 1 #print('total batch time:',time.perf_counter()-starttime) print('lipreal inference processor stop') class LipReal(BaseReal): @torch.no_grad() def __init__(self, opt, model, avatar): super().__init__(opt) #self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters. self.W = opt.W self.H = opt.H self.fps = opt.fps # 20 ms per frame self.batch_size = opt.batch_size self.idx = 0 self.res_frame_queue = Queue(self.batch_size*2) #mp.Queue #self.__loadavatar() self.model = model self.frame_list_cycle,self.face_list_cycle,self.coord_list_cycle = avatar self.asr = LipASR(opt,self) self.asr.warm_up() #self.__warm_up() self.render_event = mp.Event() def __del__(self): print(f'lipreal({self.sessionid}) delete') def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None): while not quit_event.is_set(): try: res_frame,idx,audio_frames = self.res_frame_queue.get(block=True, timeout=1) except queue.Empty: continue if audio_frames[0][1]!=0 and audio_frames[1][1]!=0: #全为静音数据,只需要取fullimg self.speaking = False audiotype = audio_frames[0][1] if self.custom_index.get(audiotype) is not None: #有自定义视频 mirindex = self.mirror_index(len(self.custom_img_cycle[audiotype]),self.custom_index[audiotype]) combine_frame = self.custom_img_cycle[audiotype][mirindex] self.custom_index[audiotype] += 1 # if not self.custom_opt[audiotype].loop and self.custom_index[audiotype]>=len(self.custom_img_cycle[audiotype]): # self.curr_state = 1 #当前视频不循环播放,切换到静音状态 else: combine_frame = self.frame_list_cycle[idx] #combine_frame = self.imagecache.get_img(idx) else: self.speaking = True bbox = self.coord_list_cycle[idx] combine_frame = copy.deepcopy(self.frame_list_cycle[idx]) #combine_frame = copy.deepcopy(self.imagecache.get_img(idx)) y1, y2, x1, x2 = bbox try: res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) except: continue #combine_frame = get_image(ori_frame,res_frame,bbox) #t=time.perf_counter() combine_frame[y1:y2, x1:x2] = res_frame #print('blending time:',time.perf_counter()-t) image = combine_frame #(outputs['image'] * 255).astype(np.uint8) new_frame = VideoFrame.from_ndarray(image, format="bgr24") asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop) self.record_video_data(image) for audio_frame in audio_frames: frame,type = audio_frame frame = (frame * 32767).astype(np.int16) new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0]) new_frame.planes[0].update(frame.tobytes()) new_frame.sample_rate=16000 # if audio_track._queue.qsize()>10: # time.sleep(0.1) asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop) self.record_audio_data(frame) print('lipreal process_frames thread stop') def render(self,quit_event,loop=None,audio_track=None,video_track=None): #if self.opt.asr: # self.asr.warm_up() self.tts.render(quit_event) self.init_customindex() process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track)) process_thread.start() Thread(target=inference, args=(quit_event,self.batch_size,self.face_list_cycle, self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue, self.model,)).start() #mp.Process #self.render_event.set() #start infer process render count=0 totaltime=0 _starttime=time.perf_counter() #_totalframe=0 while not quit_event.is_set(): # update texture every frame # audio stream thread... t = time.perf_counter() self.asr.run_step() # if video_track._queue.qsize()>=2*self.opt.batch_size: # print('sleep qsize=',video_track._queue.qsize()) # time.sleep(0.04*video_track._queue.qsize()*0.8) if video_track._queue.qsize()>=5: print('sleep qsize=',video_track._queue.qsize()) time.sleep(0.04*video_track._queue.qsize()*0.8) # delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms # if delay > 0: # time.sleep(delay) #self.render_event.clear() #end infer process render print('lipreal thread stop')