You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

45 lines
1.6 KiB
Python

6 months ago
import torch
from torch import nn
from torch.nn import functional as F
class Conv2d(nn.Module):
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.Conv2d(cin, cout, kernel_size, stride, padding),
nn.BatchNorm2d(cout)
)
self.act = nn.ReLU()
self.residual = residual
def forward(self, x):
out = self.conv_block(x)
if self.residual:
out += x
return self.act(out)
class nonorm_Conv2d(nn.Module):
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.Conv2d(cin, cout, kernel_size, stride, padding),
)
self.act = nn.LeakyReLU(negative_slope=0.01)
def forward(self, x):
out = self.conv_block(x)
return self.act(out)
class Conv2dTranspose(nn.Module):
def __init__(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding),
nn.BatchNorm2d(cout)
)
self.act = nn.ReLU()
def forward(self, x):
out = self.conv_block(x)
return self.act(out)