|
|
|
|
###############################################################################
|
|
|
|
|
# Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking
|
|
|
|
|
# email: lipku@foxmail.com
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
###############################################################################
|
|
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
import torch
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
#from .utils import *
|
|
|
|
|
import os
|
|
|
|
|
import time
|
|
|
|
|
import cv2
|
|
|
|
|
import glob
|
|
|
|
|
import pickle
|
|
|
|
|
import copy
|
|
|
|
|
|
|
|
|
|
import queue
|
|
|
|
|
from queue import Queue
|
|
|
|
|
from threading import Thread, Event
|
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from lightasr import LightASR
|
|
|
|
|
import asyncio
|
|
|
|
|
from av import AudioFrame, VideoFrame
|
|
|
|
|
from basereal import BaseReal
|
|
|
|
|
|
|
|
|
|
#from imgcache import ImgCache
|
|
|
|
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
#new
|
|
|
|
|
import os
|
|
|
|
|
import cv2
|
|
|
|
|
import torch
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
from torch import optim
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from transformers import Wav2Vec2Processor, HubertModel
|
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
from ultralight.unet import Model
|
|
|
|
|
from ultralight.audio2feature import Audio2Feature
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
print('Using {} for inference.'.format(device))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_model(opt):
|
|
|
|
|
audio_processor = Audio2Feature()
|
|
|
|
|
return audio_processor
|
|
|
|
|
|
|
|
|
|
def load_avatar(avatar_id):
|
|
|
|
|
avatar_path = f"./data/avatars/{avatar_id}"
|
|
|
|
|
full_imgs_path = f"{avatar_path}/full_imgs"
|
|
|
|
|
face_imgs_path = f"{avatar_path}/face_imgs"
|
|
|
|
|
coords_path = f"{avatar_path}/coords.pkl"
|
|
|
|
|
|
|
|
|
|
model = Model(6, 'hubert').to(device) # 假设Model是你自定义的类
|
|
|
|
|
model.load_state_dict(torch.load(f"{avatar_path}/ultralight.pth"))
|
|
|
|
|
|
|
|
|
|
with open(coords_path, 'rb') as f:
|
|
|
|
|
coord_list_cycle = pickle.load(f)
|
|
|
|
|
input_img_list = glob.glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
|
|
|
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
|
|
|
frame_list_cycle = read_imgs(input_img_list)
|
|
|
|
|
#self.imagecache = ImgCache(len(self.coord_list_cycle),self.full_imgs_path,1000)
|
|
|
|
|
input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
|
|
|
|
input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
|
|
|
face_list_cycle = read_imgs(input_face_list)
|
|
|
|
|
|
|
|
|
|
return model.eval(),frame_list_cycle,face_list_cycle,coord_list_cycle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
def warm_up(batch_size,avatar,modelres):
|
|
|
|
|
print('warmup model...')
|
|
|
|
|
model,_,_,_ = avatar
|
|
|
|
|
img_batch = torch.ones(batch_size, 6, modelres, modelres).to(device)
|
|
|
|
|
mel_batch = torch.ones(batch_size, 32, 32, 32).to(device)
|
|
|
|
|
model(img_batch, mel_batch)
|
|
|
|
|
|
|
|
|
|
def read_imgs(img_list):
|
|
|
|
|
frames = []
|
|
|
|
|
print('reading images...')
|
|
|
|
|
for img_path in tqdm(img_list):
|
|
|
|
|
frame = cv2.imread(img_path)
|
|
|
|
|
frames.append(frame)
|
|
|
|
|
return frames
|
|
|
|
|
|
|
|
|
|
def get_audio_features(features, index):
|
|
|
|
|
left = index - 8
|
|
|
|
|
right = index + 8
|
|
|
|
|
pad_left = 0
|
|
|
|
|
pad_right = 0
|
|
|
|
|
if left < 0:
|
|
|
|
|
pad_left = -left
|
|
|
|
|
left = 0
|
|
|
|
|
if right > features.shape[0]:
|
|
|
|
|
pad_right = right - features.shape[0]
|
|
|
|
|
right = features.shape[0]
|
|
|
|
|
auds = torch.from_numpy(features[left:right])
|
|
|
|
|
if pad_left > 0:
|
|
|
|
|
auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0)
|
|
|
|
|
if pad_right > 0:
|
|
|
|
|
auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16]
|
|
|
|
|
return auds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_lms(lms_list):
|
|
|
|
|
land_marks = []
|
|
|
|
|
print('reading lms...')
|
|
|
|
|
for lms_path in tqdm(lms_list):
|
|
|
|
|
file_landmarks = [] # Store landmarks for this file
|
|
|
|
|
with open(lms_path, "r") as f:
|
|
|
|
|
lines = f.read().splitlines()
|
|
|
|
|
for line in lines:
|
|
|
|
|
arr = list(filter(None, line.split(" ")))
|
|
|
|
|
if arr:
|
|
|
|
|
arr = np.array(arr, dtype=np.float32)
|
|
|
|
|
file_landmarks.append(arr)
|
|
|
|
|
land_marks.append(file_landmarks) # Add the file's landmarks to the overall list
|
|
|
|
|
return land_marks
|
|
|
|
|
|
|
|
|
|
def __mirror_index(size, index):
|
|
|
|
|
#size = len(self.coord_list_cycle)
|
|
|
|
|
turn = index // size
|
|
|
|
|
res = index % size
|
|
|
|
|
if turn % 2 == 0:
|
|
|
|
|
return res
|
|
|
|
|
else:
|
|
|
|
|
return size - res - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inference(quit_event, batch_size, face_list_cycle, audio_feat_queue, audio_out_queue, res_frame_queue, model):
|
|
|
|
|
length = len(face_list_cycle)
|
|
|
|
|
index = 0
|
|
|
|
|
count = 0
|
|
|
|
|
counttime = 0
|
|
|
|
|
print('start inference')
|
|
|
|
|
|
|
|
|
|
while not quit_event.is_set():
|
|
|
|
|
starttime=time.perf_counter()
|
|
|
|
|
try:
|
|
|
|
|
mel_batch = audio_feat_queue.get(block=True, timeout=1)
|
|
|
|
|
except queue.Empty:
|
|
|
|
|
continue
|
|
|
|
|
is_all_silence=True
|
|
|
|
|
audio_frames = []
|
|
|
|
|
for _ in range(batch_size*2):
|
|
|
|
|
frame,type_ = audio_out_queue.get()
|
|
|
|
|
audio_frames.append((frame,type_))
|
|
|
|
|
if type_==0:
|
|
|
|
|
is_all_silence=False
|
|
|
|
|
if is_all_silence:
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
|
|
|
|
index = index + 1
|
|
|
|
|
else:
|
|
|
|
|
t = time.perf_counter()
|
|
|
|
|
img_batch = []
|
|
|
|
|
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
idx = __mirror_index(length, index + i)
|
|
|
|
|
#face = face_list_cycle[idx]
|
|
|
|
|
crop_img = face_list_cycle[idx] #face[ymin:ymax, xmin:xmax]
|
|
|
|
|
# h, w = crop_img.shape[:2]
|
|
|
|
|
#crop_img = cv2.resize(crop_img, (168, 168), cv2.INTER_AREA)
|
|
|
|
|
#crop_img_ori = crop_img.copy()
|
|
|
|
|
img_real_ex = crop_img[4:164, 4:164].copy()
|
|
|
|
|
img_real_ex_ori = img_real_ex.copy()
|
|
|
|
|
img_masked = cv2.rectangle(img_real_ex_ori,(5,5,150,145),(0,0,0),-1)
|
|
|
|
|
|
|
|
|
|
img_masked = img_masked.transpose(2,0,1).astype(np.float32)
|
|
|
|
|
img_real_ex = img_real_ex.transpose(2,0,1).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
img_real_ex_T = torch.from_numpy(img_real_ex / 255.0)
|
|
|
|
|
img_masked_T = torch.from_numpy(img_masked / 255.0)
|
|
|
|
|
img_concat_T = torch.cat([img_real_ex_T, img_masked_T], axis=0)[None]
|
|
|
|
|
img_batch.append(img_concat_T)
|
|
|
|
|
|
|
|
|
|
reshaped_mel_batch = [arr.reshape(32, 32, 32) for arr in mel_batch]
|
|
|
|
|
mel_batch = torch.stack([torch.from_numpy(arr) for arr in reshaped_mel_batch])
|
|
|
|
|
img_batch = torch.stack(img_batch).squeeze(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
pred = model(img_batch.cuda(),mel_batch.cuda())
|
|
|
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
|
|
|
|
|
|
|
|
counttime += (time.perf_counter() - t)
|
|
|
|
|
count += batch_size
|
|
|
|
|
if count >= 100:
|
|
|
|
|
print(f"------actual avg infer fps:{count / counttime:.4f}")
|
|
|
|
|
count = 0
|
|
|
|
|
counttime = 0
|
|
|
|
|
for i,res_frame in enumerate(pred):
|
|
|
|
|
#self.__pushmedia(res_frame,loop,audio_track,video_track)
|
|
|
|
|
res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
|
|
|
|
index = index + 1
|
|
|
|
|
|
|
|
|
|
# for i, pred_frame in enumerate(pred):
|
|
|
|
|
# pred_frame_uint8 = np.array(pred_frame, dtype=np.uint8)
|
|
|
|
|
# res_frame_queue.put((pred_frame_uint8, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
|
|
|
|
|
# index = (index + 1) % length
|
|
|
|
|
|
|
|
|
|
#print('total batch time:', time.perf_counter() - starttime)
|
|
|
|
|
|
|
|
|
|
print('lightreal inference processor stop')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LightReal(BaseReal):
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
def __init__(self, opt, model, avatar):
|
|
|
|
|
super().__init__(opt)
|
|
|
|
|
#self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
|
|
|
|
|
self.W = opt.W
|
|
|
|
|
self.H = opt.H
|
|
|
|
|
|
|
|
|
|
self.fps = opt.fps # 20 ms per frame
|
|
|
|
|
|
|
|
|
|
self.batch_size = opt.batch_size
|
|
|
|
|
self.idx = 0
|
|
|
|
|
self.res_frame_queue = Queue(self.batch_size*2) #mp.Queue
|
|
|
|
|
#self.__loadavatar()
|
|
|
|
|
audio_processor = model
|
|
|
|
|
self.model,self.frame_list_cycle,self.face_list_cycle,self.coord_list_cycle = avatar
|
|
|
|
|
|
|
|
|
|
self.asr = LightASR(opt,self,audio_processor)
|
|
|
|
|
self.asr.warm_up()
|
|
|
|
|
#self.__warm_up()
|
|
|
|
|
|
|
|
|
|
self.render_event = mp.Event()
|
|
|
|
|
|
|
|
|
|
def __del__(self):
|
|
|
|
|
print(f'lightreal({self.sessionid}) delete')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
|
|
|
|
|
|
|
|
|
|
while not quit_event.is_set():
|
|
|
|
|
try:
|
|
|
|
|
res_frame,idx,audio_frames = self.res_frame_queue.get(block=True, timeout=1)
|
|
|
|
|
except queue.Empty:
|
|
|
|
|
continue
|
|
|
|
|
if audio_frames[0][1]!=0 and audio_frames[1][1]!=0: #全为静音数据,只需要取fullimg
|
|
|
|
|
self.speaking = False
|
|
|
|
|
audiotype = audio_frames[0][1]
|
|
|
|
|
if self.custom_index.get(audiotype) is not None: #有自定义视频
|
|
|
|
|
mirindex = self.mirror_index(len(self.custom_img_cycle[audiotype]),self.custom_index[audiotype])
|
|
|
|
|
combine_frame = self.custom_img_cycle[audiotype][mirindex]
|
|
|
|
|
self.custom_index[audiotype] += 1
|
|
|
|
|
# if not self.custom_opt[audiotype].loop and self.custom_index[audiotype]>=len(self.custom_img_cycle[audiotype]):
|
|
|
|
|
# self.curr_state = 1 #当前视频不循环播放,切换到静音状态
|
|
|
|
|
else:
|
|
|
|
|
combine_frame = self.frame_list_cycle[idx]
|
|
|
|
|
#combine_frame = self.imagecache.get_img(idx)
|
|
|
|
|
else:
|
|
|
|
|
self.speaking = True
|
|
|
|
|
bbox = self.coord_list_cycle[idx]
|
|
|
|
|
combine_frame = copy.deepcopy(self.frame_list_cycle[idx])
|
|
|
|
|
x1, y1, x2, y2 = bbox
|
|
|
|
|
|
|
|
|
|
crop_img = self.face_list_cycle[idx]
|
|
|
|
|
crop_img_ori = crop_img.copy()
|
|
|
|
|
#res_frame = np.array(res_frame, dtype=np.uint8)
|
|
|
|
|
try:
|
|
|
|
|
crop_img_ori[4:164, 4:164] = res_frame.astype(np.uint8)
|
|
|
|
|
crop_img_ori = cv2.resize(crop_img_ori, (x2-x1,y2-y1))
|
|
|
|
|
except:
|
|
|
|
|
continue
|
|
|
|
|
combine_frame[y1:y2, x1:x2] = crop_img_ori
|
|
|
|
|
#print('blending time:',time.perf_counter()-t)
|
|
|
|
|
|
|
|
|
|
new_frame = VideoFrame.from_ndarray(combine_frame, format="bgr24")
|
|
|
|
|
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
|
|
|
|
|
self.record_video_data(combine_frame)
|
|
|
|
|
|
|
|
|
|
for audio_frame in audio_frames:
|
|
|
|
|
frame,type_ = audio_frame
|
|
|
|
|
frame = (frame * 32767).astype(np.int16)
|
|
|
|
|
new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
|
|
|
|
|
new_frame.planes[0].update(frame.tobytes())
|
|
|
|
|
new_frame.sample_rate=16000
|
|
|
|
|
# if audio_track._queue.qsize()>10:
|
|
|
|
|
# time.sleep(0.1)
|
|
|
|
|
asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
|
|
|
|
|
self.record_audio_data(frame)
|
|
|
|
|
print('lightreal process_frames thread stop')
|
|
|
|
|
|
|
|
|
|
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
|
|
|
|
|
#if self.opt.asr:
|
|
|
|
|
# self.asr.warm_up()
|
|
|
|
|
|
|
|
|
|
self.tts.render(quit_event)
|
|
|
|
|
self.init_customindex()
|
|
|
|
|
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
|
|
|
|
|
process_thread.start()
|
|
|
|
|
Thread(target=inference, args=(quit_event,self.batch_size,self.face_list_cycle,self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue,
|
|
|
|
|
self.model,)).start() #mp.Process
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#self.render_event.set() #start infer process render
|
|
|
|
|
count=0
|
|
|
|
|
totaltime=0
|
|
|
|
|
_starttime=time.perf_counter()
|
|
|
|
|
#_totalframe=0
|
|
|
|
|
while not quit_event.is_set():
|
|
|
|
|
# update texture every frame
|
|
|
|
|
# audio stream thread...
|
|
|
|
|
t = time.perf_counter()
|
|
|
|
|
self.asr.run_step()
|
|
|
|
|
|
|
|
|
|
# if video_track._queue.qsize()>=2*self.opt.batch_size:
|
|
|
|
|
# print('sleep qsize=',video_track._queue.qsize())
|
|
|
|
|
# time.sleep(0.04*video_track._queue.qsize()*0.8)
|
|
|
|
|
if video_track._queue.qsize()>=5:
|
|
|
|
|
print('sleep qsize=',video_track._queue.qsize())
|
|
|
|
|
time.sleep(0.04*video_track._queue.qsize()*0.8)
|
|
|
|
|
|
|
|
|
|
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
|
|
|
|
|
# if delay > 0:
|
|
|
|
|
# time.sleep(delay)
|
|
|
|
|
#self.render_event.clear() #end infer process render
|
|
|
|
|
print('lightreal thread stop')
|
|
|
|
|
|
|
|
|
|
|