You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

343 lines
13 KiB
Python

###############################################################################
# Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking
# email: lipku@foxmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
import math
import torch
import numpy as np
#from .utils import *
import os
import time
import cv2
import glob
import pickle
import copy
import queue
from queue import Queue
from threading import Thread, Event
import torch.multiprocessing as mp
from lightasr import LightASR
import asyncio
from av import AudioFrame, VideoFrame
from basereal import BaseReal
#from imgcache import ImgCache
from tqdm import tqdm
#new
import os
import cv2
import torch
import numpy as np
import torch.nn as nn
from torch import optim
from tqdm import tqdm
from transformers import Wav2Vec2Processor, HubertModel
from torch.utils.data import DataLoader
from ultralight.unet import Model
from ultralight.audio2feature import Audio2Feature
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))
def load_model(opt):
audio_processor = Audio2Feature()
return audio_processor
def load_avatar(avatar_id):
avatar_path = f"./data/avatars/{avatar_id}"
full_imgs_path = f"{avatar_path}/full_imgs"
face_imgs_path = f"{avatar_path}/face_imgs"
coords_path = f"{avatar_path}/coords.pkl"
model = Model(6, 'hubert').to(device) # 假设Model是你自定义的类
model.load_state_dict(torch.load(f"{avatar_path}/ultralight.pth"))
with open(coords_path, 'rb') as f:
coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
frame_list_cycle = read_imgs(input_img_list)
#self.imagecache = ImgCache(len(self.coord_list_cycle),self.full_imgs_path,1000)
input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
face_list_cycle = read_imgs(input_face_list)
return model.eval(),frame_list_cycle,face_list_cycle,coord_list_cycle
@torch.no_grad()
def warm_up(batch_size,avatar,modelres):
print('warmup model...')
model,_,_,_ = avatar
img_batch = torch.ones(batch_size, 6, modelres, modelres).to(device)
mel_batch = torch.ones(batch_size, 32, 32, 32).to(device)
model(img_batch, mel_batch)
def read_imgs(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def get_audio_features(features, index):
left = index - 8
right = index + 8
pad_left = 0
pad_right = 0
if left < 0:
pad_left = -left
left = 0
if right > features.shape[0]:
pad_right = right - features.shape[0]
right = features.shape[0]
auds = torch.from_numpy(features[left:right])
if pad_left > 0:
auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0)
if pad_right > 0:
auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16]
return auds
def read_lms(lms_list):
land_marks = []
print('reading lms...')
for lms_path in tqdm(lms_list):
file_landmarks = [] # Store landmarks for this file
with open(lms_path, "r") as f:
lines = f.read().splitlines()
for line in lines:
arr = list(filter(None, line.split(" ")))
if arr:
arr = np.array(arr, dtype=np.float32)
file_landmarks.append(arr)
land_marks.append(file_landmarks) # Add the file's landmarks to the overall list
return land_marks
def __mirror_index(size, index):
#size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def inference(quit_event, batch_size, face_list_cycle, audio_feat_queue, audio_out_queue, res_frame_queue, model):
length = len(face_list_cycle)
index = 0
count = 0
counttime = 0
print('start inference')
while not quit_event.is_set():
starttime=time.perf_counter()
try:
mel_batch = audio_feat_queue.get(block=True, timeout=1)
except queue.Empty:
continue
is_all_silence=True
audio_frames = []
for _ in range(batch_size*2):
frame,type_ = audio_out_queue.get()
audio_frames.append((frame,type_))
if type_==0:
is_all_silence=False
if is_all_silence:
for i in range(batch_size):
res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
index = index + 1
else:
t = time.perf_counter()
img_batch = []
for i in range(batch_size):
idx = __mirror_index(length, index + i)
#face = face_list_cycle[idx]
crop_img = face_list_cycle[idx] #face[ymin:ymax, xmin:xmax]
# h, w = crop_img.shape[:2]
#crop_img = cv2.resize(crop_img, (168, 168), cv2.INTER_AREA)
#crop_img_ori = crop_img.copy()
img_real_ex = crop_img[4:164, 4:164].copy()
img_real_ex_ori = img_real_ex.copy()
img_masked = cv2.rectangle(img_real_ex_ori,(5,5,150,145),(0,0,0),-1)
img_masked = img_masked.transpose(2,0,1).astype(np.float32)
img_real_ex = img_real_ex.transpose(2,0,1).astype(np.float32)
img_real_ex_T = torch.from_numpy(img_real_ex / 255.0)
img_masked_T = torch.from_numpy(img_masked / 255.0)
img_concat_T = torch.cat([img_real_ex_T, img_masked_T], axis=0)[None]
img_batch.append(img_concat_T)
reshaped_mel_batch = [arr.reshape(32, 32, 32) for arr in mel_batch]
mel_batch = torch.stack([torch.from_numpy(arr) for arr in reshaped_mel_batch])
img_batch = torch.stack(img_batch).squeeze(1)
with torch.no_grad():
pred = model(img_batch.cuda(),mel_batch.cuda())
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
counttime += (time.perf_counter() - t)
count += batch_size
if count >= 100:
print(f"------actual avg infer fps:{count / counttime:.4f}")
count = 0
counttime = 0
for i,res_frame in enumerate(pred):
#self.__pushmedia(res_frame,loop,audio_track,video_track)
res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
index = index + 1
# for i, pred_frame in enumerate(pred):
# pred_frame_uint8 = np.array(pred_frame, dtype=np.uint8)
# res_frame_queue.put((pred_frame_uint8, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
# index = (index + 1) % length
#print('total batch time:', time.perf_counter() - starttime)
print('lightreal inference processor stop')
class LightReal(BaseReal):
@torch.no_grad()
def __init__(self, opt, model, avatar):
super().__init__(opt)
#self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.W = opt.W
self.H = opt.H
self.fps = opt.fps # 20 ms per frame
self.batch_size = opt.batch_size
self.idx = 0
self.res_frame_queue = Queue(self.batch_size*2) #mp.Queue
#self.__loadavatar()
audio_processor = model
self.model,self.frame_list_cycle,self.face_list_cycle,self.coord_list_cycle = avatar
self.asr = LightASR(opt,self,audio_processor)
self.asr.warm_up()
#self.__warm_up()
self.render_event = mp.Event()
def __del__(self):
print(f'lightreal({self.sessionid}) delete')
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
while not quit_event.is_set():
try:
res_frame,idx,audio_frames = self.res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
if audio_frames[0][1]!=0 and audio_frames[1][1]!=0: #全为静音数据只需要取fullimg
self.speaking = False
audiotype = audio_frames[0][1]
if self.custom_index.get(audiotype) is not None: #有自定义视频
mirindex = self.mirror_index(len(self.custom_img_cycle[audiotype]),self.custom_index[audiotype])
combine_frame = self.custom_img_cycle[audiotype][mirindex]
self.custom_index[audiotype] += 1
# if not self.custom_opt[audiotype].loop and self.custom_index[audiotype]>=len(self.custom_img_cycle[audiotype]):
# self.curr_state = 1 #当前视频不循环播放,切换到静音状态
else:
combine_frame = self.frame_list_cycle[idx]
#combine_frame = self.imagecache.get_img(idx)
else:
self.speaking = True
bbox = self.coord_list_cycle[idx]
combine_frame = copy.deepcopy(self.frame_list_cycle[idx])
x1, y1, x2, y2 = bbox
crop_img = self.face_list_cycle[idx]
crop_img_ori = crop_img.copy()
#res_frame = np.array(res_frame, dtype=np.uint8)
try:
crop_img_ori[4:164, 4:164] = res_frame.astype(np.uint8)
crop_img_ori = cv2.resize(crop_img_ori, (x2-x1,y2-y1))
except:
continue
combine_frame[y1:y2, x1:x2] = crop_img_ori
#print('blending time:',time.perf_counter()-t)
new_frame = VideoFrame.from_ndarray(combine_frame, format="bgr24")
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
self.record_video_data(combine_frame)
for audio_frame in audio_frames:
frame,type_ = audio_frame
frame = (frame * 32767).astype(np.int16)
new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
new_frame.planes[0].update(frame.tobytes())
new_frame.sample_rate=16000
# if audio_track._queue.qsize()>10:
# time.sleep(0.1)
asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
self.record_audio_data(frame)
print('lightreal process_frames thread stop')
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
#if self.opt.asr:
# self.asr.warm_up()
self.tts.render(quit_event)
self.init_customindex()
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
process_thread.start()
Thread(target=inference, args=(quit_event,self.batch_size,self.face_list_cycle,self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue,
self.model,)).start() #mp.Process
#self.render_event.set() #start infer process render
count=0
totaltime=0
_starttime=time.perf_counter()
#_totalframe=0
while not quit_event.is_set():
# update texture every frame
# audio stream thread...
t = time.perf_counter()
self.asr.run_step()
# if video_track._queue.qsize()>=2*self.opt.batch_size:
# print('sleep qsize=',video_track._queue.qsize())
# time.sleep(0.04*video_track._queue.qsize()*0.8)
if video_track._queue.qsize()>=5:
print('sleep qsize=',video_track._queue.qsize())
time.sleep(0.04*video_track._queue.qsize()*0.8)
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
# if delay > 0:
# time.sleep(delay)
#self.render_event.clear() #end infer process render
print('lightreal thread stop')