|
|
|
import time
|
|
|
|
import math
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
class InvertedResidual(nn.Module):
|
|
|
|
def __init__(self, inp, oup, stride, use_res_connect, expand_ratio=6):
|
|
|
|
super(InvertedResidual, self).__init__()
|
|
|
|
self.stride = stride
|
|
|
|
assert stride in [1, 2]
|
|
|
|
|
|
|
|
self.use_res_connect = use_res_connect
|
|
|
|
|
|
|
|
self.conv = nn.Sequential(
|
|
|
|
nn.Conv2d(inp, inp * expand_ratio, 1, 1, 0, bias=False),
|
|
|
|
nn.BatchNorm2d(inp * expand_ratio),
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
nn.Conv2d(inp * expand_ratio,
|
|
|
|
inp * expand_ratio,
|
|
|
|
3,
|
|
|
|
stride,
|
|
|
|
1,
|
|
|
|
groups=inp * expand_ratio,
|
|
|
|
bias=False),
|
|
|
|
nn.BatchNorm2d(inp * expand_ratio),
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
nn.Conv2d(inp * expand_ratio, oup, 1, 1, 0, bias=False),
|
|
|
|
nn.BatchNorm2d(oup),
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.use_res_connect:
|
|
|
|
return x + self.conv(x)
|
|
|
|
else:
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
|
|
class DoubleConvDW(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels, stride=2):
|
|
|
|
|
|
|
|
super(DoubleConvDW, self).__init__()
|
|
|
|
self.double_conv = nn.Sequential(
|
|
|
|
InvertedResidual(in_channels, out_channels, stride=stride, use_res_connect=False, expand_ratio=2),
|
|
|
|
InvertedResidual(out_channels, out_channels, stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.double_conv(x)
|
|
|
|
|
|
|
|
class InConvDw(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels):
|
|
|
|
super(InConvDw, self).__init__()
|
|
|
|
self.inconv = nn.Sequential(
|
|
|
|
InvertedResidual(in_channels, out_channels, stride=1, use_res_connect=False, expand_ratio=2)
|
|
|
|
)
|
|
|
|
def forward(self, x):
|
|
|
|
return self.inconv(x)
|
|
|
|
|
|
|
|
class Down(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels):
|
|
|
|
|
|
|
|
super(Down, self).__init__()
|
|
|
|
self.maxpool_conv = nn.Sequential(
|
|
|
|
DoubleConvDW(in_channels, out_channels, stride=2)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.maxpool_conv(x)
|
|
|
|
|
|
|
|
class Up(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels):
|
|
|
|
super(Up, self).__init__()
|
|
|
|
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
|
|
|
self.conv = DoubleConvDW(in_channels, out_channels, stride=1)
|
|
|
|
|
|
|
|
def forward(self, x1, x2):
|
|
|
|
|
|
|
|
x1 = self.up(x1)
|
|
|
|
diffY = x2.shape[2] - x1.shape[2]
|
|
|
|
diffX = x2.shape[3] - x1.shape[3]
|
|
|
|
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2])
|
|
|
|
x = torch.cat([x1, x2], axis=1)
|
|
|
|
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
|
|
class OutConv(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels):
|
|
|
|
super(OutConv, self).__init__()
|
|
|
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
|
|
|
|
def forward(self, x):
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
|
|
class AudioConvWenet(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(AudioConvWenet, self).__init__()
|
|
|
|
# ch = [16, 32, 64, 128, 256] # if you want to run this model on a mobile device, use this.
|
|
|
|
ch = [32, 64, 128, 256, 512]
|
|
|
|
self.conv1 = InvertedResidual(ch[3], ch[3], stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
self.conv2 = InvertedResidual(ch[3], ch[3], stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
|
|
|
|
self.conv3 = nn.Conv2d(ch[3], ch[3], kernel_size=3, padding=1, stride=(1,2))
|
|
|
|
self.bn3 = nn.BatchNorm2d(ch[3])
|
|
|
|
|
|
|
|
self.conv4 = InvertedResidual(ch[3], ch[3], stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
|
|
|
|
self.conv5 = nn.Conv2d(ch[3], ch[4], kernel_size=3, padding=3, stride=2)
|
|
|
|
self.bn5 = nn.BatchNorm2d(ch[4])
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
|
|
|
self.conv6 = InvertedResidual(ch[4], ch[4], stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
self.conv7 = InvertedResidual(ch[4], ch[4], stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
|
|
|
|
x = self.relu(self.bn3(self.conv3(x)))
|
|
|
|
|
|
|
|
x = self.conv4(x)
|
|
|
|
|
|
|
|
x = self.relu(self.bn5(self.conv5(x)))
|
|
|
|
|
|
|
|
x = self.conv6(x)
|
|
|
|
x = self.conv7(x)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
class AudioConvHubert(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(AudioConvHubert, self).__init__()
|
|
|
|
# ch = [16, 32, 64, 128, 256] # if you want to run this model on a mobile device, use this.
|
|
|
|
ch = [32, 64, 128, 256, 512]
|
|
|
|
self.conv1 = InvertedResidual(32, ch[1], stride=1, use_res_connect=False, expand_ratio=2)
|
|
|
|
self.conv2 = InvertedResidual(ch[1], ch[2], stride=1, use_res_connect=False, expand_ratio=2)
|
|
|
|
|
|
|
|
self.conv3 = nn.Conv2d(ch[2], ch[3], kernel_size=3, padding=1, stride=(2,2))
|
|
|
|
self.bn3 = nn.BatchNorm2d(ch[3])
|
|
|
|
|
|
|
|
self.conv4 = InvertedResidual(ch[3], ch[3], stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
|
|
|
|
self.conv5 = nn.Conv2d(ch[3], ch[4], kernel_size=3, padding=3, stride=2)
|
|
|
|
self.bn5 = nn.BatchNorm2d(ch[4])
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
|
|
|
self.conv6 = InvertedResidual(ch[4], ch[4], stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
self.conv7 = InvertedResidual(ch[4], ch[4], stride=1, use_res_connect=True, expand_ratio=2)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
|
|
|
|
x = self.relu(self.bn3(self.conv3(x)))
|
|
|
|
|
|
|
|
x = self.conv4(x)
|
|
|
|
|
|
|
|
x = self.relu(self.bn5(self.conv5(x)))
|
|
|
|
|
|
|
|
x = self.conv6(x)
|
|
|
|
x = self.conv7(x)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self,n_channels=6, mode='hubert'):
|
|
|
|
super(Model, self).__init__()
|
|
|
|
self.n_channels = n_channels #BGR
|
|
|
|
# ch = [16, 32, 64, 128, 256] # if you want to run this model on a mobile device, use this.
|
|
|
|
ch = [32, 64, 128, 256, 512]
|
|
|
|
|
|
|
|
if mode=='hubert':
|
|
|
|
self.audio_model = AudioConvHubert()
|
|
|
|
if mode=='wenet':
|
|
|
|
self.audio_model = AudioConvWenet()
|
|
|
|
|
|
|
|
self.fuse_conv = nn.Sequential(
|
|
|
|
DoubleConvDW(ch[4]*2, ch[4], stride=1),
|
|
|
|
DoubleConvDW(ch[4], ch[3], stride=1)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.inc = InConvDw(n_channels, ch[0])
|
|
|
|
self.down1 = Down(ch[0], ch[1])
|
|
|
|
self.down2 = Down(ch[1], ch[2])
|
|
|
|
self.down3 = Down(ch[2], ch[3])
|
|
|
|
self.down4 = Down(ch[3], ch[4])
|
|
|
|
|
|
|
|
self.up1 = Up(ch[4], ch[3]//2)
|
|
|
|
self.up2 = Up(ch[3], ch[2]//2)
|
|
|
|
self.up3 = Up(ch[2], ch[1]//2)
|
|
|
|
self.up4 = Up(ch[1], ch[0])
|
|
|
|
|
|
|
|
self.outc = OutConv(ch[0], 3)
|
|
|
|
|
|
|
|
def forward(self, x, audio_feat):
|
|
|
|
|
|
|
|
x1 = self.inc(x)
|
|
|
|
x2 = self.down1(x1)
|
|
|
|
x3 = self.down2(x2)
|
|
|
|
x4 = self.down3(x3)
|
|
|
|
x5 = self.down4(x4)
|
|
|
|
|
|
|
|
audio_feat = self.audio_model(audio_feat)
|
|
|
|
x5 = torch.cat([x5, audio_feat], axis=1)
|
|
|
|
x5 = self.fuse_conv(x5)
|
|
|
|
x = self.up1(x5, x4)
|
|
|
|
x = self.up2(x, x3)
|
|
|
|
x = self.up3(x, x2)
|
|
|
|
x = self.up4(x, x1)
|
|
|
|
out = self.outc(x)
|
|
|
|
out = F.sigmoid(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
import time
|
|
|
|
import copy
|
|
|
|
import onnx
|
|
|
|
import numpy as np
|
|
|
|
onnx_path = "./unet.onnx"
|
|
|
|
|
|
|
|
from thop import profile, clever_format
|
|
|
|
|
|
|
|
def reparameterize_model(model: torch.nn.Module) -> torch.nn.Module:
|
|
|
|
""" Method returns a model where a multi-branched structure
|
|
|
|
used in training is re-parameterized into a single branch
|
|
|
|
for inference.
|
|
|
|
:param model: MobileOne model in train mode.
|
|
|
|
:return: MobileOne model in inference mode.
|
|
|
|
"""
|
|
|
|
# Avoid editing original graph
|
|
|
|
model = copy.deepcopy(model)
|
|
|
|
for module in model.modules():
|
|
|
|
if hasattr(module, 'reparameterize'):
|
|
|
|
module.reparameterize()
|
|
|
|
return model
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else ("mps" if (hasattr(torch.backends, "mps") and torch.backends.mps.is_available()) else "cpu"))
|
|
|
|
def check_onnx(torch_out, torch_in, audio):
|
|
|
|
onnx_model = onnx.load(onnx_path)
|
|
|
|
onnx.checker.check_model(onnx_model)
|
|
|
|
import onnxruntime
|
|
|
|
providers = ["CUDAExecutionProvider"]
|
|
|
|
ort_session = onnxruntime.InferenceSession(onnx_path, providers=providers)
|
|
|
|
print(ort_session.get_providers())
|
|
|
|
ort_inputs = {ort_session.get_inputs()[0].name: torch_in.cpu().numpy(), ort_session.get_inputs()[1].name: audio.cpu().numpy()}
|
|
|
|
ort_outs = ort_session.run(None, ort_inputs)
|
|
|
|
np.testing.assert_allclose(torch_out[0].cpu().numpy(), ort_outs[0][0], rtol=1e-03, atol=1e-05)
|
|
|
|
print("Exported model has been tested with ONNXRuntime, and the result looks good!")
|
|
|
|
|
|
|
|
net = Model(6).eval().to(device)
|
|
|
|
img = torch.zeros([1, 6, 160, 160]).to(device)
|
|
|
|
audio = torch.zeros([1, 16, 32, 32]).to(device)
|
|
|
|
# net = reparameterize_model(net)
|
|
|
|
flops, params = profile(net, (img,audio))
|
|
|
|
macs, params = clever_format([flops, params], "%3f")
|
|
|
|
print(macs, params)
|
|
|
|
# dynamic_axes= {'input':[2, 3], 'output':[2, 3]}
|
|
|
|
|
|
|
|
input_dict = {"input": img, "audio": audio}
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
torch_out = net(img, audio)
|
|
|
|
print(torch_out.shape)
|
|
|
|
torch.onnx.export(net, (img, audio), onnx_path, input_names=['input', "audio"],
|
|
|
|
output_names=['output'],
|
|
|
|
# dynamic_axes=dynamic_axes,
|
|
|
|
# example_outputs=torch_out,
|
|
|
|
opset_version=11,
|
|
|
|
export_params=True)
|
|
|
|
check_onnx(torch_out, img, audio)
|
|
|
|
|
|
|
|
# img = torch.zeros([1, 6, 160, 160]).to(device)
|
|
|
|
# audio = torch.zeros([1, 16, 32, 32]).to(device)
|
|
|
|
# with torch.no_grad():
|
|
|
|
# for i in range(100000):
|
|
|
|
# t1 = time.time()
|
|
|
|
# out = net(img, audio)
|
|
|
|
# t2 = time.time()
|
|
|
|
# # print(out.shape)
|
|
|
|
# print('time cost::', t2-t1)
|
|
|
|
# torch.save(net.state_dict(), '1.pth')
|